Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Earth Science News .




ABOUT US
A better brain implant: Slim electrode cozies up to single neurons
by Staff Writers
Ann Arbor MI (SPX) Nov 15, 2012


An artist's rendering of individual neurons. A new electrode developed at the University of Michigan can focus on the electrical signals of just one neuron. It may help researchers understand how electrical signals move through neural networks in the brain. Because this electrode is so small and unobtrusive, it may be able to stay in the brain for long periods without upsetting the immune system, perhaps picking up signals to send to prosthetic limbs. Image credit: Takashi Kozai

A thin, flexible electrode developed at the University of Michigan is 10 times smaller than the nearest competition and could make long-term measurements of neural activity practical at last.

This kind of technology could eventually be used to send signals to prosthetic limbs, overcoming inflammation larger electrodes cause that damages both the brain and the electrodes.

The main problem that neurons have with electrodes is that they make terrible neighbors. In addition to being enormous compared to the neurons, they are stiff and tend to rub nearby cells the wrong way. The resident immune cells spot the foreigner and attack, inflaming the brain tissue and blocking communication between the electrode and the cells.

The new electrode developed by the teams of Daryl Kipke, a professor of biomedical engineering, Joerg Lahann, a professor of chemical engineering, and Nicholas Kotov, the Joseph B. and Florence V. Cejka Professor of Engineering, is unobtrusive and even friendly in comparison. It is a thread of highly conductive carbon fiber, coated in plastic to block out signals from other neurons. The conductive gel pad at the end cozies up to soft cell membranes, and that close connection means the signals from brain cells come in much clearer.

"It's a huge step forward," Kotov said. "This electrode is about seven microns in diameter, or 0.007 millimeters, and its closest competitor is about 25 to 100 microns."

The gel even speaks the cell's language, he said. Electrical impulses travel through the brain by movements of ions, or atoms with electric charges, and the signals move through the gel in the same way. On the other side, the carbon fiber responds to the ions by moving electrons, effectively translating the brain's signal into the language of electronic devices.

To demonstrate how well the electrode listens in on real neurons, Kipke's team implanted it into the brains of rats. The electrode's narrow profile allows it to focus on just one neuron, and the team saw this in the sharp electrical signals coming through the fiber. They weren't getting a muddle of multiple neurons in conversation. In addition to picking up specific signals to send to prosthetics, listening to single neurons could help tease out many of the brain's big puzzles.

"How neurons are communicating with each other? What are the pathways for information processing in the brain? These are the questions that can be answered in the future with this kind of technique," Kotov said.

"Because these devices are so small, we can combine them with emerging optical techniques to visually observe what the cells are doing in the brain while listening to their electrical signals," said Takashi Kozai, who led the project as a student in Kipke's lab and has since earned his Ph.D. "This will unlock new understanding of how the brain works on the cellular and network level."

Kipke stressed that the electrode that the team tested is not a clinical trial-ready device, but it shows that efforts to shrink electrodes toward the size of brain cells are paying off.

"The results strongly suggest that creating feasible electrode arrays at these small dimensions is a viable path forward for making longer-lasting devices," he said.

In order to listen to a neuron for long, or help people control a prosthetic as they do a natural limb, the electrodes need to be able to survive for years in the brain without doing significant damage. With only six weeks of testing, the team couldn't say for sure how the electrode would fare in the long term, but the results were promising.

"Typically, we saw a peak in immune response at two weeks, then by three weeks it subsided, and by six weeks it had already stabilized," Kotov said. "That stabilization is the important observation."

The rat's neurons and immune system got used to the electrodes, suggesting that the electronic invaders might be able to stay for the long term.

While we won't see bionic arms or Iron Man-style suits on the market next year, Kipke is optimistic that prosthetic devices could start linking up with the brain in a decade or so.

"The surrounding work of developing very fine robotic control and clinical training protocols-that work is progressing along its own trajectory," Kipke said.

.


Related Links
University of Michigan
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ABOUT US
Kids need at least seven minutes a day of 'vigorous' physical activity
Edmonton, Canada (SPX) Nov 15, 2012
Children need a minimum of seven minutes a day of vigorous physical activity, demonstrates recently published findings by University of Alberta medical researchers and their colleagues across Canada. "If you watch late-night television, or look in the backs of magazines, you'll see magical ads saying you need just 10 minutes a day or five minutes a day of exercise to stay fit. And for thos ... read more


ABOUT US
Life's no beach for seaside victims of Sandy

Statement on the handling of risk situations by scientists

Under-fire utility boss resigns after storm Sandy

New York governor seeks $30 bn in aid after Sandy

ABOUT US
Raytheon submits Space Fence proposal to the USAF

Larger version of Kindle Fire tablet unleashed

Lockheed Martin Submits Space Fence Radar Proposal to USAF to Detect and Track Orbital Objects

Chinese LED firm plans record investment in Taiwan

ABOUT US
Super storm tracked by ESA water mission

Greenpeace catches 'black market' fish

Navy Oceanographers Delve Deeper in Wave Data to Improve Forecasts

EU gives 'yellow card' to eight nations for illegal fishing

ABOUT US
Why Antarctic sea ice cover has increased under the effects of climate change

Summer has arrived at frozen Antarctic runway

Clouds Could Explain How Snowball Earth Thawed Out

U.S., New Zealand in Antarctic proposal

ABOUT US
In Mexico City, a green revolution, one lettuce at a time

Climate-related emissions from feedyards monitored in AgriLife Research study

CSHL-led team discovers new way in which plants control flower production

Gene find turns soldier beetle defence into biotech opportunity

ABOUT US
Strong Mexico quake causes panic but no damage reported

2011 Virginia quake triggered landslides at extraordinary distances

Tabletop fault model reveals why some quakes result in faster shaking

New York art market flooded -- literally

ABOUT US
Nigerian military offensive kills 'murderer of ex-general'

Dialogue 'preferred option' for Mali crisis: UN envoy

Kenya to deploy army after massacre of police

Algeria urges talks on Mali after military accord

ABOUT US
Virtual Reality Could Help People Lose Weight and Fight Prejudice

Research suggests that humans are slowly but surely losing intellectual and emotional abilities

A better brain implant: Slim electrode cozies up to single neurons

Significant relationship between mortality and telomere length discovered




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement