Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Earth Science News .




ABOUT US
Thick hair mutation emerged 30,000 years ago in humans
by Staff Writers
London, UK (SPX) Feb 19, 2013


File image courtesy AFP.

The first animal model of recent human evolution reveals that a single mutation produced several traits common in East Asian peoples, from thicker hair to denser sweat glands, an international team of researchers report.

The team, led by researchers from Harvard Medical School, Harvard University, the Broad Institute of MIT and Harvard, Massachusetts General Hospital, Fudan University and University College London, also modeled the spread of the gene mutation across Asia and North America, concluding that it most likely arose about 30,000 years ago in what is today central China.

The findings are reported in the cover story of the 14 February issue of Cell.

"There are three parts to this study" said Professor Mark Thomas, UCL Research Department of Genetics, Evolution and Environment, and an author on the paper.

"The first links the version of the EDAR gene common in East Asians to a set of traits including thicker hair and a higher density of sweat glands; the second uses computer simulation to identify where and when the mutation is likely to have arisen, and what its selective advantage was likely to be; and the third showed that when the East Asian version of the gene is inserted into a mouse, that mouse exhibited many of the same traits as those it is linked with in humans".

Previous research in Pardis Sabeti's lab at Harvard University had identified the mutation as a strong candidate for positive selection. That is, evidence within the genetic code suggested the mutant gene conferred an evolutionary advantage, though what advantage was unclear.

The mutation was found in a gene for ectodysplasin receptor, or EDAR, part of a signalling pathway known to play a key role in the development of hair, sweat glands and other skin features. While human populations in Africa and Europe had one, ancestral, version of the gene, most East Asians had a derived variant, EDARV370A, which studies had linked to thicker scalp hair and an altered tooth shape in humans.

The ectodysplasin pathway is highly conserved across vertebrates - the same genes do similar things in humans and mice and zebrafish. For that reason, and because its effects on skin, hair and scales can be observed directly, it is widely studied.

This evolutionary conservation led Yana Kamberov, one of two first authors to reason that EDARV370A would exert similar biological effects in an animal model as in humans. Kamberov developed a mouse model with the exact mutation of EDARV370A - a difference of one DNA letter from the original, or wild-type, population. That mouse manifested thicker hair, more densely branched mammary glands and an increased number of sweat glands.

"This not only directly pointed us to the subset of organs and tissues that were sensitive to the mutation, but also gave us the key biological evidence that EDARV370A could have been acted on by natural selection," said Kamberov.

The findings prompted the team to look for similar traits in human populations. When co-first author Sijia Wang and the team including collaborators at Fudan University examined the fingertips of Chinese volunteers at colleges and farming villages, they found that the sweat glands of Han Chinese, who carry the derived variant of the gene, were packed about 15 percent more densely than those of a control population with the ancestral variant.

At the same time, collaborators at UCL were working to zero in on when and where the mutation arose.

Computer models suggest that the derived variant of the gene emerged in central China between 13,175 and 39,575 years ago, with a modal (most likely) estimate of 30,925 years.

Researchers concluded the derived variant is at least 15,000 years old, predating the migration from Asia by Native Americans, who also carry the mutation.

That time span suggests that different traits could have been under selection at different times. The mutation's many effects only complicate the question. If changes to the sweat glands conferred an advantage in new climates - one of the theories the researchers plan to explore further - changes to hair and to mammary glands could have conferred other advantages at other times.

Professor Thomas said: "We don't know which of the many traits were advantageous in the past. It is easy to imagine that thicker hair, tooth shape, more sweat glands or some other associated skin features could have increased fitness, but for quite different reasons."

Dr Pascale Gerbault, a PhD student in Professor Thomas's group, and co-author of the paper said: "What seems unlikely is that the same traits were advantageous throughout the whole of the last 30,000 years; prior to 10,000 years ago the climate was cold and highly variable, but for the last 10,000 years it has been much warmer and relatively stable."

She added: "So perhaps one trait was favoured when it was colder and another when it became warmer. Maybe one of the less visible traits was selected early on, leading to a rise in the frequency of a more visible trait like thicker hair, which was later selected as a cultural preference."

Sijia Wang - a former UCL PhD student - intends to focus on that question in his new role, as a Max Planck independent research group leader in dermatogenomics at Chinese Academy of Sciences - Max Planck Partner Institute for Computational Biology in Shanghai.

By leveraging the power of diverse fields, the team is piecing together the foundation for understanding how selected mutations like EDARV370A have impacted human diversity. But, the authors say, this is only the beginning.

"These findings point to what mutations, when, where and how," said Daniel Lieberman, a professor of human evolutionary biology at Harvard University and a co-senior author on the study. "We still want to know why."

Senior authors of the paper: Li Jin, Vice President, Fudan University, Daniel Lieberman, Professor of Human Evolutionary Biology at Harvard University, Bruce Morgan, HMS Associate Professor of Dermatology at Massachusetts General Hospital, Pardis Sabeti, associate professor in the Center for Systems Biology and Department of Organismic and Evolutionary Biology at Harvard University, Cliff Tabin, Head of the HMS Department of Genetics, Mark Thomas, Professor of Evolutionary Genetics at University College London

.


Related Links
University College London
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ABOUT US
Tiny mutation had big evolutionary impact
Cambridge, Mass. (UPI) Feb 15, 2013
A small genetic mutation 30,000 years ago spread rapidly in central China and may have helped humans in Asia survive severe heat and humidity, researchers say. Scientists writing in the journal Cell said the mutation in a gene known as EDAR endowed humans with extra sweat glands, a mutation that proved successful and spread across the region. People who inherited the variant may ... read more


ABOUT US
Four guilty of manslaughter in Italy quake trial

Warning of emergency alert system hacks

No health effects from Fukushima: Japan researcher

Aid trickles into tsunami-hit Solomons despite aftershocks

ABOUT US
Researchers strain to improve electrical material and it's worth it

Explosive breakthrough in research on molecular recognition

Indra Develops The First High-Resolution Passive Radar System

ORNL scientists solve mercury mystery

ABOUT US
Quantifying Sediment From 2011 Flood Into Louisianas Wetlands

Japanese scientists hunt for groundwater

Landslides delivered preferred upstream habitats for coho salmon

Middle East river basin has lost Dead Sea-sized quantity of water

ABOUT US
Ice age extinction shaped Australian plant diversity

European sat data confirms UW numbers that Arctic is on thin ice

NASA Scientists Part of Arctic Sea Ice Study

Rapid changes in Arctic ecosystem during 2012 ice minimum

ABOUT US
Marsh plants actively engineer their landscape

Advance promises to expand biological control of crop pests

Buffaloes a divisive link to Hong Kong's past

Mexico to slaughter a half million chickens over bird flu

ABOUT US
Flood research shows human habits die hard

Indonesia floods, landslides kill 17

Mystery gold gifts for tsunami-wracked Japan port

Shimmering water reveals cold volcanic vent in Antarctic waters

ABOUT US
ICoast, Guinea vow peaceful resolution to border dispute

South Sudan president retires over 100 army generals

Pistorius shooting puts spotlight on S.African gun violence

US warns of tensions on Sudan-S.Sudan border

ABOUT US
Thick hair mutation emerged 30,000 years ago in humans

Tiny mutation had big evolutionary impact

Bilingual babies get good at grammar

UF researchers include humans in most comprehensive tree of life to date




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement