Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Earth Science News .




WATER WORLD
Antibacterial products fuel resistant bacteria in streams and rivers
by Staff Writers
Millbrook NY (SPX) Sep 22, 2013


This is a combined sewer overflow on Chicago's North Shore channel. Credit: John Kelly.

Triclosan - a synthetic antibacterial widely used in personal care products - is fueling the development of resistant bacteria in streams and rivers. So reports a new paper in the journal Environmental Science and Technology, which is the first to document triclosan resistance in a natural environment.

Invented for surgeons in the 1960s, triclosan slows or stops the growth of bacteria, fungi, and mildew. Currently, around half of liquid soaps contain the chemical, as well as toothpastes, deodorants, cosmetics, liquid cleansers, and detergents. Triclosan enters streams and rivers through domestic wastewater, leaky sewer infrastructure, and sewer overflows, with residues now common throughout the United States.

Emma Rosi-Marshall, one of the paper's authors and an aquatic ecologist at the Cary Institute of Ecosystem Studies in Millbrook, New York explains: "The bacterial resistance caused by triclosan has real environmental consequences. Not only does it disrupt aquatic life by changing native bacterial communities, but it's linked to the rise of resistant bacteria that could diminish the usefulness of important antibiotics."

With colleagues from Loyola University and the Illinois Sustainable Technology Center, Rosi-Marshall explored how bacteria living in stream and river sediments responded to triclosan in both natural and controlled settings. Field studies were conducted at three sites in the Chicago metropolitan region: urban North Shore Channel, suburban West Branch Dupage River, and rural Nippersink Creek.

Urbanization was correlated with a rise in both triclosan concentrations in sediments and the proportion of bottom-dwelling bacteria resistant to triclosan. A woodland creek had the lowest levels of triclosan-resistant bacteria, while a site on the North Shore Channel downstream of 25 combined sewer overflows had the highest levels.

Combined sewers deliver domestic sewage, industrial wastewater, and storm water to a regional treatment plant using a single pipe. Overflows occur when a pipe's capacity is exceeded, typically due to excessive runoff from high rainfall or snowmelt events. The result: untreated sewage flows directly into rivers and streams.

The research team found that combined sewer overflows that release untreated sewage are a major source of triclosan pollution in Chicago's North Shore Channel. In addition, their findings support past work that indicates sewage treatment plants can effectively remove triclosan from wastewater.

John Kelly of Loyola University Chicago, the paper's senior author, comments, "We detected much lower levels of triclosan at a site downstream of a sewage treatment facility as compared to a site downstream of combined sewer overflows. And we demonstrated a strong link between the presence of triclosan in the environment and the development of triclosan resistant bacteria."

Nearly 800 cities in the United States rely on combined sewer overflows, with the Environmental Protection Agency citing them as a major water pollution concern.

Artificial stream experiments conducted at Loyola University confirmed field findings that triclosan exposure triggers an increase in triclosan-resistant bacteria. In addition to the creation of these resistant bacteria, researchers also found a decrease in the diversity of benthic bacteria and a shift in the composition of bacterial communities. Most notable were a 6-fold increase in cyanobacteria and a dramatic die-off of algae.

Rosi-Marshall explains how these shifts could impact aquatic life, "Cyanobacteria are less nutritious than algae and can produce toxins. In triclosan-polluted streams and rivers, changes in microbial communities could negatively affect ecological function and animal communities."

The study is the latest in an ongoing effort to better understand the environmental and human health consequences of synthetic antimicrobials. Funding was provided by a grant from the Illinois Sustainable Technology Center. Triclosan Exposure Increases Triclosan Resistance and Influences Taxonomic Composition of Benthic Bacterial Communities, Environ. Sci. Technol., 2013, 47 (15), pp 8923-8930

.


Related Links
Cary Institute of Ecosystem Studies
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Cilantro, that favorite salsa ingredient, purifies drinking water
Indianapolis IN (SPX) Sep 18, 2013
Hints that a favorite ingredient in Mexican, Southeast Asian and other spicy cuisine may be an inexpensive new way of purifying drinking water are on the menu today at the 246th National Meeting and Exposition of the American Chemical Society, the world's largest scientific society. The meeting included almost 7,000 reports on new discoveries in science and other topics. Reporting on ... read more


WATER WORLD
Australians should be told of boat turn-backs, ex-navy chief

Obama: Navy Yard shooting must inspire gun law change

In Mexico, storms dredge up human errors

Fukushima town protests Abe's global promise on crippled plant: reports

WATER WORLD
Environmentally friendly cement is stronger than ordinary cement

X-ray science taps bug biology to design better materials and reduce pollution

Catalysts team up with textiles

Raytheon, Falck Schmidt unveil remotely operated long-range surveillance system

WATER WORLD
Malaysian natives protest as dam begins to fill

Antibacterial products fuel resistant bacteria in streams and rivers

U of M researchers discover early-warning system to prevent fishery collapse

Online citizen scientists: Classify plankton images

WATER WORLD
Russia mulls piracy charge against Greenpeace protesters

Trail of melting Swiss glacier shows climate change in action

Research: Australian Aboriginals showed adaptability in last ice age

Unprecedented rate and scale of ocean acidification found in the Arctic

WATER WORLD
Brazil rancher's conviction upheld in US nun's death

Vaccinating cattle against E. coli O157 could cut human cases of infection by 85 percent

Sensors allow for efficient irrigation, give growers more control over plant growth

Different forage affects beef cattle weight, taste

WATER WORLD
More than 100 killed in Mexico landslides, flooding: official

Mexico looks to rebuild from deadly, costly twin storms

Flight chaos as typhoon lashes southern China, killing three

25 dead as typhoon hits China, flight chaos in Hong Kong

WATER WORLD
160 UN peacekeepers desert Mali posts: military

Three Ivorian police killed in attacks

Uganda suspends 24 officers over Somalia corruption

Mali ministers met by hail of stones in Tuareg stronghold

WATER WORLD
Findings in Middle East suggest early human routes into Europe

Paleorivers across Sahara may have supported ancient human migration routes

Orangutans plan their future route and communicate it to others

New evidence that orangutans and gorillas can match images based on biological categories




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement