Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



ABOUT US
Carnegie Mellon develops new method for analyzing synaptic density
by Staff Writers
Pittsburgh PA (SPX) Jan 01, 2016


This image shows synapses in the somatosensory cortex stained with ethanolic phosphotungstic acid and visualized using electron microscopy. Synapses were identified using a Carnegie Mellon-developed machine learning algorithm that enables a high-throughput analysis of experience-dependent changes in synapse properties across the cortical column. For this image, candidate synapses were selected from electron micrographs and aligned, then pseudocolored for contrast. Image courtesy Saket Navlakha and Alison Barth; the Journal of Neuroscience. For a larger version of this image please go here.

Carnegie Mellon University researchers have developed a new approach to broadly survey learning-related changes in synapse properties. In a study published in the Journal of Neuroscience and featured on the journal's cover, the researchers used machine-learning algorithms to analyze thousands of images from the cerebral cortex.

This allowed them to identify synapses from an entire cortical region, revealing unanticipated information about how synaptic properties change during development and learning. The study is one of the largest electron microscopy studies ever carried out, evaluating more subjects and more images than prior researchers have attempted.

As the brain learns and responds to sensory stimuli, its neurons make connections with one another. These connections, called synapses, facilitate neuronal communication, and their anatomic and electrophysiological properties contain information vital to understanding how the brain behaves in health and disease.

Researchers use different techniques, including electron microscopy, to identify and analyze synapse properties. While electron microscopy can be a useful tool for reconstructing neural circuits, it is also data and labor intensive. As a result, researchers have only been able to use it to study small, targeted areas of the brain until now.

Studying a large section of the brain using traditional electron microscopy techniques would result in terabytes of unwieldy data, given that the brain has billions of neurons, each with hundreds to thousands of synaptic connections. The new technique developed at Carnegie Mellon simplifies this problem by combining a specialized staining process with machine learning.

"Instead of getting perfect information from a tiny part of the brain, we can now get lower-resolution information from a huge region of the brain," said Alison Barth, professor of biological sciences and interim director of Carnegie Mellon's BrainHub neuroscience initiative. "This could be a great tool to see how disease progresses, or how drug treatments alter or restore synaptic connections."

This research is the latest example of how researchers with Carnegie Mellon's BrainHub research initiative are combining their expertise in biology and computer science to create new tools to advance neuroscience. The technique uses a special chemical preparation that deeply stains the synapses in a sample of brain tissue.

When the tissue is imaged using an electron microscope, only the synapses can be seen, creating an image that can be easily classified by a computer program. Researchers then use machine learning algorithms to identify and compare synapse properties across a column of the cerebral cortex.

To test the effectiveness of their technique, the researchers, led by Santosh Chandrasekaran, examined how synapses across a complex circuit, composed of hundreds of interconnected neurons, would change with altered somatosensory input. In the past, Barth has used this model to study how neurons behave and synapses form in both learning and development. But traditional techniques only allowed her to look at neurons in a very small area of the neocortex.

"It was like looking for the perfect gift, but only going to one store. We might have been able to find something at that first location, but it was always possible that we might find something else - maybe even something better - at another place," said Barth, who is a member of the joint Carnegie Mellon/University of Pittsburgh Center for the Neural Basis of Cognition (CNBC).

"This new technique allows us to look across all six layers of the neocortex, and to see how synapses across different parts of the circuit change together."

The researchers analyzed close to 25,000 images and 40,000 synapses, exponentially more than they were ever able to look at before using traditional methods. They found that the technique could be used to determine increases in synapse density and size during development and learning. Most notably, they found that synapse properties changed in a coordinated way across the entire region of the neocortex examined.

"Some of the cortical layers we saw were most affected have never been examined systematically before," explains Barth. "We've got a lot of great leads to follow up on."

The researchers are now beginning to use this data to develop new hypotheses about how synapses are organized in the neocortex in response to sensory input.

Additional study authors include: Saket Navlakha, formerly of Carnegie Mellon and now at the Salk Institute for Biological Studies; Nicholas J. Audette, Dylan D. McCreary, and Joe Suhan of Carnegie Mellon's Department of Biological Sciences and the CNBC; and Ziv Bar-Joseph of Carnegie Mellon's Machine Learning Department and Lane Center for Computational Cancer Research.


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

.


Related Links
Carnegie Mellon University
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Previous Report
ABOUT US
Same growth rate for farming, non-farming prehistoric people
Laramie WY (SPX) Dec 28, 2015
Prehistoric human populations of hunter-gatherers in a region of North America grew at the same rate as farming societies in Europe, according to a new radiocarbon analysis involving researchers from the University of Wyoming and the Harvard-Smithsonian Center for Astrophysics. The findings challenge the commonly held view that the advent of agriculture 10,000-12,000 years ago accelerated ... read more


ABOUT US
Bus passengers airlifted as Scotland bears floods brunt

UN offers to help Iraqi refugees return to Ramadi

Britain's floods: causes, costs and consequences

British bikers start anti-looting patrols after floods

ABOUT US
Nature's masonry: The first steps in how thin protein sheets form polyhedral shells

Move aside carbon: Boron nitride-reinforced materials are even stronger

Super strong, lightweight metal could build tomorrow's spacecraft

BAE Systems to provide radar support for U.S. Air Force

ABOUT US
Skulls from Vanuatu cemetery suggest Polynesians were first settlers

Record El Nino, climate change drive extreme weather

Water levels in Great Salt Lake's north arm hit historic low

Large permanent reserves required for effective conservation of old fish

ABOUT US
Geologic formation could hold clues to melting glacier floodwaters

An ice core study to determine the timing and duration of historical climate stages

Methane emissions in Arctic cold season higher than expected

Chile eyes construction of permanent Antarctica pier

ABOUT US
China's COFCO to buy agri-arm of top Asian trader

How LED lighting treatments affect greenhouse tomato quality

Belgian chocolatier goes 'bean-to-bar' for best taste

Will grassland soil weather a change?

ABOUT US
Floods claim 13 lives, force evacuation of US town

On patrol with bikers scaring off looters after UK floods

UK flood chief feeling heat over Barbados break

Chilean architecture stands test of earthquakes

ABOUT US
Mali extends state of emergency until March 31

Mali pro-govt armed group accuses France of killing 4 fighters

Malawi suspends 63 civil servants over stolen US funds

Expanded use of yuan to help revive Zimbabwe's economy: Mugabe

ABOUT US
Genomes of early Irish settlers sequenced

Same growth rate for farming, non-farming prehistoric people

How brain architecture leads to abstract thought

Scientists say face mites evolved alongside humans




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement