Earth Science News  





. Changing Environment Organizes Genetic Structure

Because modularity begets complexity, the more modular genetic information becomes, the more complex the web of life becomes. For example, human beings are far more complex than singled-celled yeast, yet they have only about four times as many genes. The complex nature of multicellular plants and animals derives not only from the genes themselves, but also from the complex regulatory networks that control the production and interaction of the products of genes -- proteins -- to fulfill multiple roles. This regulatory network is another example of modular organization.
by Staff Writers
Houston TX (SPX) Nov 14, 2007
What is the fundamental creative force behind life on Earth" It's a question that has vexed mankind for millennia, and thanks to theory and almost a year's worth of number-crunching on a supercomputer, Rice University physicist and bioengineer Michael Deem thinks he has the answer: A changing environment may organize the structure of genetic information itself. Deem's research is available online and slated to appear next month in Physical Review Letters.

"Our results suggest that the beautiful, intricate and interrelated structures observed in nature may be the generic result of evolution in a changing environment," Deem said. "The existence of such structure need not necessarily rest on intelligent design or the anthropic principle."

The information that allows all living things to survive and reproduce is encoded in genes. Deem's theory probed the structure of this genetic information, looking for patterns that were created over time.

The study by Deem and postdoctoral fellow Jun Sun found the structure of genetic information becomes increasingly modular when two conditions are taken as givens: horizontal gene transfer (HGT) and a changing environment. Like modular furniture that can be rearranged in different functional patterns, modular genes are standardized components that lend themselves to flexible rearrangement, and this genetic modularity arises spontaneously because of the selective pressure of a changing environment and the existence of horizontal gene transfer.

Genes are typically transferred vertically. People, plants and animals pass genes vertically, from generation to generation, through sexual reproduction. Bacteria transfer genes vertically via conjugation. HGT allows genes, pieces of genes and collections of genes to move between species, even in cases where vertical transfer is physically impossible.

Though scientists have known about HGT for years, it was thought to be rare and infrequent until sophisticated tools opened the genetic history of many species in the 1990s. Today, HGT is widely accepted as the primary reason for antibiotic drug resistance, and Deem said HGT played a significant role in human development as well. "Our acquired immune system is a product of horizontal gene transfer and is organized in a modular fashion," he said.

Deem's study found that an organism's fitness -- the likelihood that it and its descendants will survive in a rapidly changing environment -- increases as the modularity of its genetic code increases. Another finding was that the faster the environment changes, the more modular genetic information becomes.

Because modularity begets complexity, the more modular genetic information becomes, the more complex the web of life becomes. For example, human beings are far more complex than singled-celled yeast, yet they have only about four times as many genes. The complex nature of multicellular plants and animals derives not only from the genes themselves, but also from the complex regulatory networks that control the production and interaction of the products of genes -- proteins -- to fulfill multiple roles. This regulatory network is another example of modular organization.

"Modularity and hierarchy are prevalent in biology, from the way atoms are arranged in molecules, molecules into amino acids and amino acids into secondary structures, domains and proteins," Deem said. "This hierarchy continues with multiprotein complexes, protein regulation pathways, cells, organs, individuals, species and ecosystems. Our research suggests that modularity and hierarchy are prevalent because genetic information self-organizes into increasingly more modular forms. A changing environment and the biochemistry of horizontal gene transfer appear to be part of the source for this fundamental creativity of life."

Community
Email This Article
Comment On This Article

Related Links
Rice University
Darwin Today At TerraDaily.com




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
Together We Stand: Bacteria Organize To Survive Hostile Zones
Baltimore MD (SPX) Nov 14, 2007
Using an innovative device with microscopic chambers, researchers from four institutions, including Johns Hopkins, have gleaned important new information about how bacteria survive in hostile environments by forming antibiotic- resistant communities called biofilms. These biofilms play key roles in cystic fibrosis, urinary tract infections and other illnesses, and the researchers say their findings could help in the development of new treatments and preventive measures.

.
Get Our Free Newsletters Via Email
  



  • Emergency Response
  • Electronic Nose Could Detect Hazards
  • Court upholds jail term for Japanese architect
  • SkyPort Signs Contract With Cisco For Emergency Response Satellite Connectivity

  • World body warns over ocean 'fertilisation' to fix climate change
  • TAU Professor Finds Global Warming Is Melting Soft Coral
  • Groups oppose "ocean fertilisation" in Philippines
  • Global warming: Oceans could absorb far more CO2, says study

  • Earth Observation Essential For Geohazard Mitigation
  • SPOT - The World's First Satellite Messenger Now Shipping
  • Fujifilm Unveils GPS-Based Data Tape Tracker
  • Vacation Photos Create 3D Models Of World Landmarks

  • Baker Institute Study Shows Big Five Oil Companies Limit Exploration
  • Alternative fuels may boost pollution: report
  • Analysis: Poll finds energy tax support
  • Clean, Carbon-Neutral Hydrogen On The Horizon

  • Repellents Between Dusk And Bedtime Make Insecticide-Treated Bednets More Effective
  • Global Fund approves over 1 bln dlrs in new grants to fight disease
  • Bug-Zapper: A Dose Of Radiation May Help Knock Out Malaria
  • Failed AIDS vaccine may have increased infection risk

  • Together We Stand: Bacteria Organize To Survive Hostile Zones
  • Monkeys rampage in Indian capital
  • Changing Environment Organizes Genetic Structure
  • Time-Sharing Birds Key To Evolutionary Mystery

  • Britain the 'dustbin of Europe': official
  • Ignored and harassed, Indian scavengers demand better work life
  • UN demands deal to phase-out use of mercury
  • What Will Become Of The Sea Of Azov

  • China now has 18 million more young men than women
  • Human Ancestors: More Gatherers Than Hunters
  • One-child Chinese families prefer it that way
  • Key To False Memories Uncovered

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement