Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



EARLY EARTH
Copper-bottomed deposits
by Staff Writers
Geneva, Switzerland (SPX) Mar 17, 2017


Chuquicamata, in Chile, is amongst the largest copper deposits in the world. Image courtesy M. Chiaradia, UNIGE.

The world's most valuable copper deposits, known as porphyry deposits, originate from cooling magma. But how can we predict the size of these deposits? What factors govern the amount of copper present? Researchers at the University of Geneva (UNIGE), Switzerland, have studied over 100,000 combinations to establish the depth and number of years required for magma to produce a given amount of copper.

The same scientists have also devised a model that can detect the quantity of copper held in a deposit by means of a simple factor analysis. The research, which is published in the journal Scientific Reports, will make it possible to estimate the potential for mining the metal before beginning any drilling. It is a model that will undoubtedly be of great benefit to mining companies.

Porphyry copper deposits account for 75% of natural copper worldwide. They are formed by magma chambers situated between 10 and 15 km beneath the Earth's surface. At this depth, the magma heats to around 900 C but when it comes into contact with the surrounding rock, it cools and crystallises.

The water in the magma can then no longer be in solution: it forms bubbles that escape to the surface, carrying with them a substantial part of the copper originally contained in the magma. At a depth of around 2-3 km, the bubbles cool down in the porosities of the rocks, and precipitate the copper they contain as sulphide, creating deposits that may include from 1 to >200 million tons of copper.

This explains why Massimo Chiaradia and Luca Caricchi, researchers in the earth sciences department in the faculty of science at UNIGE, were so keen to discover what dictates the amount of copper in a deposit and whether it was possible to anticipate its size.

More magma means more copper
The volume of magma determines the amount of copper, but under what conditions does the volume of the initial magma form? Chiaradia explains: "We used models that incorporate the depth and timescale at which the magma accumulates, the duration of the build-up that forms the deposit, the water content of the magma and the quantity of copper in the water. We then varied these parameters from a minimum to a maximum based on actual measurements."

By modifying the parameters, the scientists obtained 100,000 simulations that they compared with the actual data available to them, which helped define the ideal conditions for the formation of a huge deposit.

As Caricchi adds: "The optimum conditions for creating a magmatic system that results in the formation of a deposit of 30 to 240 million tons of copper is a depth of over 20 km and a continuous injection time of molten magma of over 2 million years."

n search of the ideal deposit
Magma contains water, copper and various other chemical components, including Strontium (Sr) and Yttrium (Y). We know that when the Sr divided by Y ratio is between 50 and 150 in the magma, there is a high probability of finding copper in the deposit. The researchers at UNIGE integrated this ratio into their new model and merged it with the estimated formation time for deposits.

Other minerals are associated with copper in these deposits, which allows scientists to date them thanks to the natural decay of uranium into lead and rhenium into osmium. This enabled the scientists to establish the age, i.e. the birth, but also the length, i.e. the number of years, for forming a copper deposit, which can range from tens of thousands of years to two million years.

"These two items of data - the Sr / Y ratio and the duration of the formation - meant we could design a table of probabilities for determining the amount of copper in the deposit under analysis", continues Chiaradia.

Mining companies will be able to use this model to assess the size of a copper deposit at the initial research stage, before starting any significant drilling work. "Our model," says Caricchi, "which we have compared to real data, has an excellent match rate, and it can save an enormous amount of time and money during mining explorations."

EARLY EARTH
New study identifies ancient shark ancestors
New York NY (SPX) Mar 15, 2017
New research based on x-ray imaging provides the strongest evidence to date that sharks arose from a group of bony fishes called acanthodians. Analyzing an extraordinarily well-preserved fossil of an ancient sharklike fish, researchers identified it as an important transitional species that points to sharks as ancanthodians' living descendants. The work is published in the journal American Museu ... read more

Related Links
Universite de Geneve
Explore The Early Earth at TerraDaily.com

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

EARLY EARTH
Japan court rules government liable for Fukushima disaster

U.S. Coast Guard avoids budget cuts

Death carts carry family ripped apart by Mosul campaign

Ai Weiwei slams 'shameful' politicians ignoring refugees

EARLY EARTH
Why water splashes: New theory reveals secrets

Next-gen steel under the microscope

Aluminium giant Rusal doubles profits

Groundbreaking process for creating ultra-selective separation membranes

EARLY EARTH
Great Barrier Reef may never recover from bleaching: study

Syria regime bombed Damascus water source: UN

Hawaiian biodiversity began declining before humans arrived

Seawater threat to California Central Coast aquifers

EARLY EARTH
To the Arctic for CryoSat and beyond

Preserving the memory of glaciers

Searching for polar bears on Alaska's North Slope

Ice age thermostat prevented extreme climate cooling

EARLY EARTH
Greenhouse gases: First it was cows now it's larvae

What makes farmers try new practices?

Cocoa industry agrees plan to tackle deforestation

Popular weedkiller doesn't cause cancer: EU agency

EARLY EARTH
More rain looms as Peru struggles with disastrous floods

Dissection of the 2015 Bonin deep earthquake

Flash floods take dramatic toll in Lima and northern Peru

BBC team among injured in Etna volcano drama

EARLY EARTH
Rags, not riches, defining Africa's urban explosion

Senegal extradites Guinean soldier wanted over massacre

.africa joins the internet

Nigerian military to probe rights abuse claims

EARLY EARTH
Nose form was shaped by climate

Indonesian tribes gather amid push to protect homelands

400,000-year-old fossil human cranium is oldest ever found in Portugal

Widespread platinum may help solve Clovis people mystery




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement