Earth Science News  





. Deep-Sea Oil Rigs Inspire MIT Designs For Giant Wind Turbines

Among three designs for floating giant wind turbines in the deep ocean, MIT research is focusing on the tension leg platform (center), a system that oil companies use for deep-water rigs. Image courtesy / National Renewable Energy Laboratory.
by Nancy Stauffer
Boston MA, (SPX) Sep 18, 2006
An MIT researcher has a vision: Four hundred huge offshore wind turbines are providing onshore customers with enough electricity to power several hundred thousand homes, and nobody standing onshore can see them. The trick? The wind turbines are floating on platforms a hundred miles out to sea, where the winds are strong and steady.

Today's offshore wind turbines usually stand on towers driven deep into the ocean floor. But that arrangement works only in water depths of about 15 meters or less. Proposed installations are therefore typically close enough to shore to arouse strong public opposition.

Paul D. Sclavounos, a professor of mechanical engineering and naval architecture, has spent decades designing and analyzing large floating structures for deep-sea oil and gas exploration. Observing the wind-farm controversies, he thought, "Wait a minute. Why can't we simply take those windmills and put them on floaters and move them farther offshore, where there's plenty of space and lots of wind?"

In 2004, he and his MIT colleagues teamed up with wind-turbine experts from the National Renewable Energy Laboratory (NREL) to integrate a wind turbine with a floater. Their design calls for a tension leg platform (TLP), a system in which long steel cables, or "tethers," connect the corners of the platform to a concrete-block or other mooring system on the ocean floor. The platform and turbine are thus supported not by an expensive tower but by buoyancy. "And you don't pay anything to be buoyant," said Sclavounos.

According to their analyses, the floater-mounted turbines could work in water depths ranging from 30 to 200 meters. In the Northeast, for example, they could be 50 to 150 kilometers from shore. And the turbine atop each platform could be big--an economic advantage in the wind-farm business. The MIT-NREL design assumes a 5.0 megawatt (MW) experimental turbine now being developed by industry. (Onshore units are 1.5 MW, conventional offshore units, 3.6 MW.)

Stable enough for towing Ocean assembly of the floating turbines would be prohibitively expensive because of their size: the wind tower is fully 90 meters tall, the rotors about 140 meters in diameter. So the researchers designed them to be assembled onshore--probably at a shipyard--and towed out to sea by a tugboat. To keep each platform stable, cylinders inside it are ballasted with concrete and water. Once on site, the platform is hooked to previously installed tethers. Water is pumped out of the cylinders until the entire assembly lifts up in the water, pulling the tethers taut.

The tethers allow the floating platforms to move from side to side but not up and down--a remarkably stable arrangement. According to computer simulations, in hurricane conditions the floating platforms--each about 30 meters in diameter--would shift by one to two meters, and the bottom of the turbine blades would remain well above the peak of even the highest wave. The researchers are hoping to reduce the sideways motion still further by installing specially designed dampers similar to those used to steady the sway of skyscrapers during high winds and earthquakes.

Sclavounos estimates that building and installing his floating support system should cost a third as much as constructing the type of truss tower now planned for deep-water installations. Installing the tethers, the electrical system, and the cable to the shore is standard procedure. Because of the strong offshore winds, the floating turbines should produce up to twice as much electricity per year (per installed megawatt) as wind turbines now in operation. And because the wind turbines are not permanently attached to the ocean floor, they are a movable asset. If a company with 400 wind turbines serving the Boston area needs more power for New York City, it can unhook some of the floating turbines and tow them south.

Encouraged by positive responses from wind, electric power, and oil companies, Sclavounos hopes to install a half-scale prototype south of Cape Cod. "We'd have a little unit sitting out there and…could show that this thing can float and behave the way we're saying it will," he said. "That's clearly the way to get going."

This research was supported by the National Renewable Energy Laboratory.

Related Links
http://www.nrel.gov/
Laboratory for Energy and the Environment
Powering The World in the 21st Century

New Ethanol Process Offers Lower Costs, Environmental Benefits
West Lafayette IN (SPX) Sep 19, 2006
Purdue Research Foundation has licensed a technology to Bio Processing Technology Inc. for the development of a new environmentally friendly method to produce ethanol that also costs less than current methods.

.
Get Our Free Newsletters Via Email
  



  • Analysis: Strengthening FEMA in DHS
  • Ideas To Rebuild Hurricane-Devastated New Orleans Showcased At Italian Fair
  • China's natural disasters cost billions, kill thousands: report
  • The Role Of Academia In The Global Aid Industry

  • Computer Model Looks At How To Cool The Earth Back Down
  • Warming Climate May Put Chill On Arctic Polar Bear Population
  • Meeting Tries To Bring Poor Nations Onboard Climate Change Pact
  • English Country Gardens Under Attack From Global Warming

  • Envisat Symposium 2007 Highlights EO Satellite Achievements
  • GeoEye Approved For Listing On The Nasdaq Global Market
  • Scientists Sketch City In Geocyberspace
  • Google Maps Spotlight Changes Across The Earth

  • New Ethanol Process Offers Lower Costs, Environmental Benefits
  • Deep-Sea Oil Rigs Inspire MIT Designs For Giant Wind Turbines
  • Russia Tightening Grip On Energy Sector With Sakhalin Move
  • China Urges Stable International Environment For Energy Security

  • Existing Vaccine Facilities Can Handle Flu Pandemic
  • Indonesian Bird Flu Toll Increases Further
  • Bird Outbreaks In Four Countries
  • University Launches New Website On 1918 Flu Pandemic

  • Paleontologists Find 67 Dinosaurs In One Week Across Gobi Desert
  • California Scientists Find Natural Way To Control Spread Of Destructive Argentine Ants
  • US Court Jails Animal Rights Activists
  • Lay Off The Stingrays Warns Australian Environoment Minister

  • Philippines Oil-Spill Tanker 'May Have Sunk During Cargo Heist'
  • Study To Forecast Side-Effects Of Pollution Policy
  • Residents Riot As Ivory Coast Promises Start To Toxic Waste Clean-Up
  • Watchdog Calls For severe Punishment For Pollution Cases In China

  • You May Be Losing More Than Just Your Memory
  • Modern Humans, Not Neandertals, May Be Evolution's 'Odd Man Out'
  • Too Many Men Could Destabilize Society
  • How Did Our Ancestors' Minds Really Work

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement