Earth Science News  





. Delving Into The Deepest Recesses Of Human Brain

Horizontal (left) and vertical (right) slices of brain show increased blood flow (red region) in brainstem (VTA or ventral tegmental area) in measurements made by functional magnetic resonance imaging. Credit: Princeton University
by Staff Writers
Princeton NJ (SPX) Feb 28, 2008
A team of scientists from Princeton University has devised a new experimental technique that produces some of the best functional images ever taken of the human brainstem, the most primitive area of the brain.

The scientists believe they may be opening the door to inquiries into a region that acts as the staging area for the brain chemicals whose overabundance or absence in other parts of the brain are at the root of many neuropsychiatric disorders, like addiction, schizophrenia and Parkinson's disease.

Reporting in the Feb. 28 edition of Science, the scientists describe using functional magnetic resonance imaging to study brainstem activity in dehydrated humans. The scanning technique allows researchers to watch the brain in action.

The subjects were participating in classical conditioning experiments in which they were presented with a visual clue, then, at varying intervals, given a drink. The researchers were able to track changes in blood flow in areas of the brainstem associated with enhanced activity of the brain chemical dopamine -- as the person experienced either pleasure or disappointment at receiving or not receiving the reward.

"For a long time, scientists have tried looking at this area of the brain and have been unsuccessful -- it's just too small," said Kimberlee D'Ardenne, the lead author on the paper. Until now, scientists wanting to use brain scans to study brain chemicals like dopamine were relegated to watching its effects in other more accessible parts of the brain, like the prefrontal cortex and ventral striatum. However, this was downstream of its source, and therefore possibly much less accurate, D'Ardenne said.

"We wanted to try because the brainstem is so important to activities in the rest of the brain," said D'Ardenne, a postdoctoral student in the Department of Chemistry. "We believe it could be a key to understanding all kinds of important behavior."

For the research, D'Ardenne collaborated with Jonathan Cohen, co-director of the Princeton Neuroscience Institute, and Samuel McClure and Leigh Nystrom, other institute scientists. They conducted the studies on the University's own brain scanner located on campus in Green Hall.

Cohen noted that these findings provide a critical link between studies in non-human animals that have looked directly at the activity of dopamine cells in the brainstem and studies in humans of behaviors thought to be related to dopamine. "It could also open up entirely new avenues of study," he said.

The team was able to develop high-resolution images that tracked the activity of tiny clusters of dopamine neurons. They weeded out distortions caused by many pulsing blood vessels in the brainstem. They also employed computerized rules of thumb known as algorithms and imaging techniques to reduce the effects of head movement and combine images from different subjects.

The MRI device produces three-dimensional images that show what portions of the brain engage during actions and thought processes. This allows the investigators to correlate physical processes with mental activities with unprecedented precision.

The brain stem, a tiny, root-shaped structure, is the lower part of the brain and sits atop the spinal cord. The area controls brain functions necessary for survival, such as breathing, digestion, heart rate, blood pressure and arousal. The brain structure also serves as the home base for the brain chemicals, also known as neuromodulators, such as dopamine, serotonin and norepinephrine. The chemicals spring forth into other brain regions from there, zipping along routes called axons.

The team's experiments confirmed results already seen in animal studies. Blood flow increased in dopamine centers of the brainstem when test subjects were happily surprised with a reward. However, there was no activity when participants received less than what they expected, a finding that is different from the results of previous studies looking farther downstream.

"We are just at the beginning of understanding these crucial pathways," D'Ardenne said. "But it gives us a hint about what is possible to know."

The tiny clumps of cells containing neuromodulator chemicals in the brainstem, called nuclei, have long been known to play a critical role in the regulation of brain function, and disturbances of these systems have been implicated in most psychiatric disorders, from addiction to schizophrenia, D'Ardenne said.

The Princeton group wants to understand how the brain's physical structures give rise to the functions of the mind, a field known as cognitive neuroscience.

For years, neuroscientists focused on the brain while psychologists dealt with the mind. The new field combines both and is being powered by scientific advances in brain imaging and gene manipulation that allows researchers to record and measure the activity of brain cells as humans or animals perform mental tasks.

Community
Email This Article
Comment On This Article

Related Links
Princeton University
All About Human Beings and How We Got To Be Here




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
Military Matters: Shooting up schools
Washington (UPI) Feb 27, 2008
Between Feb. 8 and Feb. 14, four American schools suffered attacks by lone gunmen. The most recent, at Northern Illinois University on Feb. 14, saw five killed, plus the gunman, and 16 wounded. Similar attacks have occurred elsewhere, including shopping malls. (William S. Lind, expressing his own personal opinion, is director of the Center for Cultural Conservatism at the Free Congress Foundation.)

.
Get Our Free Newsletters Via Email
  



  • Indonesian city braces for disaster with little more than hope
  • Death toll from China snow storms hits 129: report
  • Kenya, UN warn crisis risks incubating new AIDS infections
  • Philippine floods and landslides toll rises to 26: officials

  • Monsoon intensity driven by Earth's orbit: study
  • Why Juniper Trees Can Live On Less Water
  • Wind variations may spur climate change
  • Voyage To Southern Ocean Aims To Study Air-Sea Fluxes Of Greenhouse Gases

  • Falcon Investigates Pollution From The Dakar Metropolis Into Desert Dust Layers
  • NASA Extends Mission For Ball Aerospace-Built ICESat
  • CIRA Scientist Among Authors Of Book Celebrating 50 Years Of Earth Observations From Space
  • Indonesia To Develop New EO Satellite

  • Exxon Valdez: oil company tells top court captain was to blame
  • Sofitel Hotels Become First Wind Powered Hotel Chain In The US
  • Analysis: Cuban oil production down
  • ADA-ES Plans To Provide Activated Carbon To The Power Industry

  • WHO plays down bird flu threat in China after three human deaths
  • Death of woman confirmed bird flu related: China health ministry
  • Yellow fever outbreak reported in Paraguay
  • Woman dies in southern China, tested positive for bird flu

  • Invasion Of The Cane Toads
  • MBL Creates Portal for Online Macroscope To Explore Life's Mysteries
  • Life May Have Begun In The Hot Or The Cold
  • Two Oxygenation Events In Ancient Oceans Sparked Spread Of Complex Life

  • Creation Of A New Material Capable Of Eliminating Pollutants Generated By The Hydrocarbon Industry
  • US DoE And Foundation Capital Partner To Commercialize Groundbreaking New Clean Energy Technologies
  • US DoE Funds Four Projects Developing Cost-Effective Enzymes For Advanced Biofuels
  • China's listed firms forced to submit environmental data: report

  • Delving Into The Deepest Recesses Of Human Brain
  • Military Matters: Shooting up schools
  • From Delicious To Death: Understanding Taste
  • Large Portion Of Brain Switches Off And Lets Creativity Flow In Jazz Improvisations

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement