. Earth Science News .

Discovery illuminates elusive proton channel gene in dinoflagellate
by Staff Writers
Chicago IL (SPX) Oct 26, 2011

When dinoflagellates floating in water are mechanically stimulated by movement, an impulse (action potential) is sent along the membrane of an internal compartment called a vacuole.

A 40-year search for a gene that causes some one-celled sea creatures to flash at night and is also found in others that produce deadly red tides, has been successfully culminated by a group of scientists led by Thomas E. DeCoursey, PhD, professor of biophysics and physiology at Rush University Medical Center.

The gene, discovered in a tiny marine organism called a dinoflagellate (Karlodinium veneficum), controls voltage-gated proton channels, which, in addition to triggering luminescence in certain single-cell sea creatures, activate many important biological mechanisms in other species, including humans.

Results of the study by DeCoursey, Susan M. E. Smith and co-researchers were published in the October 17, 2011 issue of the Proceedings of the National Academy of Sciences. The study was funded in part by grants from the National Science Foundation and the National Institutes of Health.

The existence of a voltage-gated proton channel in bioluminescent dinoflagellates was proposed in 1972 by J. Woodland Hastings, a co-author on the current study, and his colleague Margaret Fogel. They hypothesized that proton channels helped trigger the flash by activating luciferase, an enzyme that helps produce luminescence.

But until now, the genetic code responsible for the proton channels in dinoflagellates had not been identified, although it had been decrypted in humans, mice, algae and sea squirts.

Voltage-gated proton channels are extremely versatile. In humans, they are involved in several basic biological processes, including release of histamine in basophils, a type of white blood cell. Proton channels also play a role in the production of reactive oxygen species such as hydrogen peroxide that kill bacteria in phagocytes, another kind of white blood cell, and in maturation of sperm immediately before fertilization.

In the current study, DeCoursey and co-researchers mined the gene sequence library of a K veneficum dinoflagellate and found a gene named kHv1 that is similar to those already known to code for proton channels in other species.

Not surprisingly, there were many differences in the make-up of the proton channel molecules in humans and tiny sea creatures, but the most important parts of the molecules turned out to be almost identical. Electrophysiologic tests confirmed that the genetically coded protein was indeed a proton channel - but one with an unprecedented quality.

Proton currents in K veneficum differ from all known proton currents in having large inward currents-a result of the channels opening at membrane potentials about 60 mV more negative than in other species, the researchers found.

"Vertebrate proton channels open to allow acid extrusion, while dinoflagellate proton channels open to allow proton influx into a cell's cytoplasm, making the channel ideally suited to trigger bioluminescence," DeCoursey explained.

When dinoflagellates floating in water are mechanically stimulated by movement, an impulse (action potential) is sent along the membrane of an internal compartment called a vacuole.

Clustered along the inside of this membrane are tiny pockets called scintillons, containing a combination of luciferin and luciferase - proteins that are able to produce a light flash under the right circumstances. The inside of the vacuole compartment is very acidic and has an abundance of protons.

As the electric impulse travels along the membrane, it causes the voltage-sensitive proton channels to open. Protons then flow from the vacuole into the scintillon, where they react with the luciferase and a flash of light results.

In nonbioluminescent mixotrophic species like K veneficum, proton influx might be involved in prey digestion (e.g., signaling prey capture) or prey capture (e.g., extrusion of stinging trichocysts).

Co-investigator Susan Smith carried out a phylogenetic analysis of known Hv1 sequences, finding high sequence diversity among the single-celled species and among invertebrates. She interpreted this finding to suggest the possibility of other novel functions of Hv1 in these species.

"As in multicellular organisms, ion channels in dinoflagellates play various roles in regulating basic life functions, which make them targets for controlling dinoflagellate populations and behavior," the authors suggested.

Future research will show whether targeting proton channels might give us a handle on controlling dinoflagellate blooms that cause deadly red tides and are responsible for massive fresh kills. Certain dinoflagellate species produce some of the most deadly poisons known, such as saxitoxin, a neurotoxin 100,000 times more potent than cocaine. Paralytic shellfish poisoning occurs in humans who eat shellfish that have consumed toxic dinoflagellates.

In addition to DeCoursey, Smith (Emory School of Medicine) and Hastings (Harvard University), the authors of this paper include Deri Morgan, Boris Musset and Vladimir V. Cherny of Rush University Medical School, and Allen R. Place of the University of Maryland Center for Environmental Sciences.

Related Links
Rush University
Water News - Science, Technology and Politics

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Run-off, emissions deliver double whammy to coastal marine creatures
Athens GA (SPX) Oct 26, 2011
Increasing acidification in coastal waters could compromise the ability of oysters and other marine creatures to form and keep their shells, according to a new study led by University of Georgia researchers. Their findings will be published in the November 2011 issue of Nature Geoscience. The researchers determined the combined effects of fertilizer runoff carried by the Mississippi River ... read more

Looting in Turkey as quake survivors seethe over aid

Rice regrets shoe shopping amid Katrina disaster: book

Radiation hotspot near Tokyo linked to Fukushima: officials

Use Japan nuke disaster to reform mental health system: WHO

RIM stock suffers on new tablet software stall

News popular on tablets but few want to pay: study

Wearable depth-sensing projection system makes any surface capable of multitouch interaction

The eyes have it: Computer-inspired creativity

China the culprit of potential water wars?

Run-off, emissions deliver double whammy to coastal marine creatures

Jet packs rule, say deep-sea astronauts

US residents say Hawaii's coral reef ecosystems worth $33.57 billion per year

Extreme Melting on Greenland Ice Sheet

China's glaciers in meltdown mode: study

Glaciers in China shrinking with warming

Polar bear habitats expected to shrink dramatically:

Breakthrough in the production of flood-tolerant crops

How plants sense low oxygen levels to survive flooding

Stem Rust-resistant Wheat Landraces Identified

Pastoralists in drought-stricken Kenya receive insurance payouts for massive livestock losses

Residents in flood-prone Bangkok urged to leave

Five die in Italy flooding

Hurricane Rina strengthens, takes aim at Cancun

Turkish earthquake devastation compounded by lax code enforcement

700 protest over war pensions in Mozambique

US troops to advise front-line units on Uganda rebels

France denies Somali bombardment, admits helping Kenya

Sudden drop in Somali arrivals in Kenya: UNHCR

World population to hit 10 bln, but 15 bln possible: UN

Study uncovers physiological nature of disgust in politics

Computer scientist cracks mysterious Copiale Cipher

Tracing the first North American hunters


The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement