Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Earth Science News .




FLORA AND FAUNA
Energy from the interior of the Earth supports life in a global ecosystem
by Staff Writers
Aarhus UK (SPX) Mar 19, 2013


Mark Lever, Aarhus University, works under sterile conditions in the laboratory. Familiar tools such as a hammer are necessary for a geomicrobiologist working with rock samples from the oceanic crust. Credit: Photo: Jesper Rais, AU Communication.

The core drill slides through a drill pipe, extending from the drill ship at the sea surface, through a water depth of 2.5 km and hundreds of metres of sediment, into the oceanic crust off the west coast of North America. Microbiologist Mark Lever is on board the Integrated Ocean Drilling Program's research vessel JOIDES Resolution to examine rock samples from the depths. The results of the studies he and his colleagues carried out are published in the journal Science.

"We're providing the first direct evidence of life in the deeply buried oceanic crust. Our findings suggest that this spatially vast ecosystem is largely supported by chemosynthesis," says Dr Lever, at the time a PhD student at the University of North Carolina at Chapel Hill, USA, and now a scientist at the Center for Geomicrobiology at Aarhus University, Denmark.

We have learned that sunlight is a prerequisite for life on Earth. Photosynthetic organisms use sunlight to convert carbon dioxide into organic material that makes up the foundation of Earth's food chains. Life in the porous rock material in the oceanic crust is fundamentally different. Energy - and therefore life's driving force - derives from geochemical processes.

"There are small veins in the basaltic oceanic crust and water runs through them. The water probably reacts with reduced iron compounds, such as olivine, in the basalt and releases hydrogen. Microorganisms use the hydrogen as a source of energy to convert carbon dioxide into organic material," explains Dr Lever. "So far, evidence for life deep within oceanic crust was based on chemical and textural signatures in rocks, but direct proof was lacking", adds Dr Olivier Rouxel of the French IFREMER institute.

Our biosphere is extended
The oceanic crust covers 60 per cent of the Earth's surface. Taking the volume into consideration, this makes it the largest ecosystem on Earth. Since the 1970s, researchers have found local ecosystems, such as hot springs, which are sustained by chemical energy.

"The hot springs are mainly found along the edges of the continental plates, where the newly formed oceanic crust meets seawater. However, the bulk of oceanic crust is deeply buried under layers of mud and hundreds to thousands of kilometres away from the geologically active areas on the edges of continental plates. Until now, we've had no proof that there is life down there," says Dr Lever.

Even though this enormous ecosystem is probably mainly based on hydrogen, several different forms of life are found here. The hydrogen-oxidising microorganisms create organic material that forms the basis for other microorganisms in the basalt. Some organisms get their energy by producing methane or by reducing sulphate, while others get energy by breaking down organic carbon by means of fermentation.

Basalt is their home
Mark Lever is a specialist in sulphur-reducing and methane-producing organisms, and these were the organisms he also chose to examine among the samples taken from the oceanic crust. These organisms are able to use hydrogen as a source of energy, and are typically not found in seawater. Dr Lever had to make sure that no microorganisms had been introduced as contaminants during the drilling process, or transported from bottom seawater entering the basaltic veins.

"We collected rock samples 55 kilometres from the nearest outcrop where seawater is entering the basalt. Here the water in the basaltic veins has a chemical composition that differs fundamentally from seawater, for instance, it is devoid of oxygen produced by photosynthesis. The microorganisms we found are native to basalt," explains Dr Lever.

Active life or dead relics?
Dr Lever's basalt is 3.5 million years old, but laboratory cultures show that the DNA belonging to these organisms is not fossil. "It all began when I extracted DNA from the rock samples we had brought up. To my great surprise, I identified genes that are found in methane-producing microorganisms.

"We subsequently analysed the chemical signatures in the rock material, and our work with carbon isotopes provided clear evidence that the organic material did not derive from dead plankton introduced by seawater, but was formed within the oceanic crust.

"In addition, sulphur isotopes showed us that microbial cycling of sulphur had taken place in the same rocks. These could all have been fossil signatures of life, but we cultured microorganisms from basalt rocks in the laboratory and were able to measure microbial methane production," explains Dr Lever.

Dr Jeff Alt of the University of Michigan at Ann Arbor adds that "Our work proves that microbes play an important role in basalt chemistry, and thereby influence ocean chemistry".

Chemosynthetic life plays a role
Mark Lever and his colleagues developed new sampling methods to avoid sampling microbial contaminants from seawater, which is often a major problem in explorations of the oceanic crust. The researchers work in an area of the world that is extremely hard to reach.

As Dr Andreas Teske of the University of North Carolina at Chapel Hill expresses "this study would not have been possible without the close collaboration of microbiologists, geochemists and geologists from the US, Denmark, France, Germany, the UK and Japan - each team member going to the limits of what was technically possible. Such strong proof for life in the deep ocean crust has eluded scientists for a long time".

Exploring the oceanic crust is still a young science. However, the prospects are great.

"Life in the deeply buried oceanic crust is supported by energy-sources that are fundamentally different from the ones that support life in both the mud layers in the sea bed and the oceanic water column.

"It is possible that life based on chemosynthesis is found on other planets, where the chemical environment permits. Our continued studies will hopefully reveal whether this is the case, and also what role life in the oceanic crust plays in the overall carbon cycle on our own planet," says Dr Lever.

'Evidence for Microbial Carbon and Sulfur Cycling in Deeply Buried Ridge Flank Basalt' by Mark A. Lever, Olivier Rouxel, Jeffrey C. Alt, Nobumichi Shimizu, Shuhei Ono, Rosalind M. Coggon, Wayne C. Shanks, III, Laura Lapham, Marcus Elvert, Xavier Prieto-Mollar, Kai-Uwe Hinrichs, Fumio Inagaki, and Andreas Teske in Science, 15 March 2013.

.


Related Links
Aarhus University
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FLORA AND FAUNA
'Bonobo heaven': life at a DR Congo ape sanctuary
Kinshasa (AFP) March 17, 2013
Claudine Andre, a 67-year-old Belgian living in the Democratic Republic of Congo, has spent the last twenty years dedicated to the protection of the bonobo, an extraordinary species of ape threatened by trafficking and poachers. Walking out of the environment ministry in Kinshasa after lodging a request to rescue an infant ape on display at a local bar, she is visibly worried. "We must ... read more


FLORA AND FAUNA
Walker's World: The best news yet

US welcomes Albania offer to resettle Iran exiles

Technology Changing The Future of Home Security

US military member suing over Japan nuke disaster

FLORA AND FAUNA
Videogame power harnessed for positive goals

Europe triples recycling but still lags target

Mobile LIDAR technology expanding rapidly

First Laser Communication System Integrated, Ready for Launch

FLORA AND FAUNA
Discards ban could impact seabirds population

Overfishing of small species causes jellyfish curse

Life found in world's deepest ocean spot

Pacific's Palau looks at commercial fishing ban

FLORA AND FAUNA
Rivers flowing under Greenland ice traced

The making of Antarctica's hidden fjords

Global warming will open unexpected new shipping routes in Arctic, UCLA researchers find

Glaciers will melt faster than ever and loss could be irreversible warn scientists

FLORA AND FAUNA
Young pigs prefer traditional soybean diet

EU aims for fresh vote to ban insecticides harmful to bees

Dead pigs show dark side of China food industry

MEPs retain ag 'greening' measures

FLORA AND FAUNA
Brazil landslides claim at least 24 lives

Heavy rains leave 13 dead in Brazil

Japan ups disaster debris estimate to reach N. America

Japan pays for tsunami cleanup on Canadian coast

FLORA AND FAUNA
Army, police shadow looms over Zimbabwe polls

I. Coast attack kills six, including two soldiers: army

Sudan, South Sudan agree new timeline to restart oil

China congratulates Kenyatta over election win

FLORA AND FAUNA
Neanderthal demise down to eye size?

New study validates longevity pathway

Siberian fossil revealed to be one of the oldest known domestic dogs

Kirk, Spock together: Putting emotion, logic into computational words




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement