Earth Science News  





. First Direct Electric Link Between Neurons And Light-Sensitive Nanoparticle Films Created

Development could lead to creation of an artificial retina
by Staff Writers
Galveston TX (SPX) Feb 28, 2007
The world's first direct electrical link between nerve cells and photovoltaic nanoparticle films has been achieved by researchers at the University of Texas Medical Branch at Galveston (UTMB) and the University of Michigan. The development opens the door to applying the unique properties of nanoparticles to a wide variety of light-stimulated nerve-signaling devices - including the possible development of a nanoparticle-based artificial retina.

Nanoparticles are artificially created bits of matter not much bigger than individual atoms. Their behavior is controlled by the same forces that shape molecules; they also exhibit the bizarre effects associated with quantum mechanics. Scientists can exploit these characteristics to custom-build new materials "from the bottom up" with characteristics such as compatibility with living cells and the ability to turn light into tiny electrical currents that can produce responses in nerves.

That's what the UTMB and Michigan researchers did, using a process devised by Michigan chemical engineering professor Nicholas Kotov, one of the authors of a paper on the research appearing in the current issue of Nano Letters. The process starts with a glass plate and then builds a layer-by-layer sandwich of two kinds of ultra-thin films, one made of mercury-tellurium nanoparticles and another of a positively charged polymer called PDDA. The scientists then added a layer of ordinary clay and a cell-friendly coating of amino acid, and placed cultured neurons on the very top.

When light shines on them, the mercury-tellurium nanoparticle film layers produce electrons, which then move up into the PDDA film layers and produce an upward-moving electrical current. "As you build up the layers of this, you get better capabilities to absorb photons and generate voltage," said UTMB research scientist Todd Pappas, lead author on the Nano Letters paper. "When the current reaches the neuron membrane, it depolarizes the cell to the point where it fires, and you get a signal in the nerve."

Although light signals have previously been transmitted to nerve cells using silicon (whose ability to turn light into electricity is employed in solar cells and in the imaging sensors of video cameras), nanoengineered materials promise far greater efficiency and versatility.

"It should be possible for us to tune the electrical characteristics of these nanoparticle films to get properties like color sensitivity and differential stimulation, the sort of things you want if you're trying to make an artificial retina, which is one of the ultimate goals of this project," Pappas said. "You can't do that with silicon. Plus, silicon is a bulk material - silicon devices are much less size-compatible with cells."

The researchers caution that despite the great potential of a light-sensitive nanoparticle-neuron interface, creating an actual implantable artificial retina is a long-range project. But they're equally hopeful about a variety of other, less complex applications made possible by a tiny, versatile light-activated interface with nerve cells - such things as new ways to connect with artificial limbs and other prostheses, and revolutionary new tools for imaging, diagnosis and therapy.

"The beauty of this achievement is that these materials can be remotely activated without having to use wires to connect them. All you have to do is deliver light to the material," said Professor Massoud Motamedi, director of UTMB's Center for Biomedical Engineering and a co-author of the paper.

"This type of technology has the ability to provide non-invasive connections between the human nervous system and prostheses and instruments that are unprecedented in their flexibility, compactness and reliability," Motamedi continued. "I feel that such nanotools are going to give the fields of medicine and biology brand-new capabilities that it's hard to even imagine now."

Other authors of the paper include University of Michigan graduate students W.M. Shan Wickramanayake and Edward Jan, as well as UTMB neuroscience and cell biology professor Malcolm Brodwick. The National Science Foundation provided funding for this research.

Email This Article

Related Links
University of Texas Medical Branch at Galveston
All About Human Beings and How We Got To Be Here

Getting On Your Nerves And Repairing Them
Bethesda MD (SPX) Feb 28, 2007
Here is some news that will certainly get on people's nerves: In a study to be published in the March 2007 issue of The FASEB Journal, scientists from East Carolina University report that a key molecular mechanism, RNA interference (RNAi), plays a role in the regeneration and repair of periphery nerves, which are the nerves located outside of the brain and spinal column.

.
Get Our Free Newsletters Via Email
  



  • Efforts To Plug Indonesian Mud Volcano Resume
  • Bid To Plug Indonesian Mud Volcano Delayed
  • Beefier Building Codes Helped Some Florida Homes Survive Tornados
  • Indonesia Delays Start Of Plan To Plug Mud Volcano

  • Banning New Coal Power Plants Will Slow Warming
  • Global Warming Is Real But Not A Priority
  • Russia, Kyoto Protocol And Climate Change
  • In Chilly Washington Global Warming Gets New Airing

  • CSIRO Imagery Shows Outer Great Barrier Reef At Risk From River Plumes
  • ITT Passes Critical Design Review for GOES-R Advanced Baseline Imager
  • Scientists Gear Up For Envisat 2007 Symposium
  • Sandstorm Over The Mediterranean

  • Insatiable Investment Funds In Hot Pursuit Of Huge Prey
  • Nevada Professor Demonstrates New Hydrogen Fuel System
  • New Coal-Fire Plants Stoke Environmental Battle In Texas
  • Clean Energy Incubator And Austin Energy Agree to Test

  • Bird Flu Spreading In Central Russia
  • E. Coli Bacteria Migrating Between Humans And Chimps In Ugandan Park
  • Resistant TB Spreads In Africa
  • Deadly Rain And Flooding In Bolivia Trigger Disease Surge

  • Lost Cuckoo Breaks Its Silence
  • City Ants Take The Heat
  • Researchers Review Bio Detection Technologies
  • A Year Of African Carnage From 23,000 Elephants

  • Carnegie Mellon Researchers Study Harmful Particulates
  • UN Forum Makes Limited Progress On Mercury Emissions
  • Disposable Sensor Uses DNA To Detect Hazardous Uranium Ions
  • Sand Latest Irritant In Singapore Regional Ties

  • Eating Ice Cream May Help Women To Conceive But Low-Fat Dairy Foods May Increase Infertility Risk
  • First Direct Electric Link Between Neurons And Light-Sensitive Nanoparticle Films Created
  • Immunologic Memory Discovery Reported
  • Inhabitants of Early Settlement Were Desperate to Find Metals

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement