Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Earth Science News .




SHAKE AND BLOW
Fresh water breathes fresh life into hurricanes
by Staff Writers
Richland WA (SPX) Aug 16, 2012


File image.

An analysis of a decade's worth of tropical cyclones shows that when hurricanes blow over ocean regions swamped by fresh water, the conditions can unexpectedly intensify the storm. Although the probability that hurricanes will hit such conditions is small, ranging from 10 to 23 percent, the effect is potentially large: Hurricanes can become 50 percent more intense, researchers report in a study appearing this week in Proceedings of the National Academy of Sciences Early Edition.

These results might help improve predictions of a hurricane's power in certain regions. Such conditions occur where large river systems pour fresh water into the ocean, such as by the Amazon River system, the Ganges River system, or where tropical storms rain considerably, as in the western Pacific Ocean.

"Sixty percent of the world's population lives in areas affected by tropical cyclones," said ocean scientist Karthik Balaguru at the Department of Energy's Pacific Northwest National Laboratory. "Cyclone Nargis killed more than one hundred and thirty eight thousand people in Burma in 2008. We can predict the paths cyclones take, but we need to predict their intensity better to protect people susceptible to their destructive power."

Most hurricanes passing over the ocean lessen in strength as the ocean water cools off due to mixing by the strong winds under the cyclone: this pumps less heat into them.

However, Balaguru, his PNNL colleagues and researchers led by Ping Chang at Texas A and M University and Ocean University of China in Qingdao, China found that when enough fresh water pours into the ocean to form what they call a barrier layer, typically about 50 meters below the surface, the ocean water can't cool as much and continues to pump heat into the cyclone. Instead of dying out, the storms grow in intensity by 50 percent on average.

A rough estimate for the destruction wreaked by a hurricane is the cube of its intensity. "A 50 percent increase in intensity can result in a much larger amount of destruction and death," said Balaguru.

Heat of the Ocean
Satellites are very useful for tracking and helping to predict the path of tropical storms as they move across the ocean and develop into cyclones, as well as predicting where the storms will make landfall.

But current technology isn't as good at predicting how intense the storm will be when it does. Satellites can only see the ocean from above, but it's the ocean's heat that feeds the storm. So Balaguru decided to look at the ocean itself.

To do so, Balaguru started with one hurricane: Omar. Omar nearly topped the scales as a Category 4 storm in the eastern Caribbean Sea in October 2008, causing $79 million in damages. Balaguru and colleagues collected data about ocean conditions including water temperature, salt content, and water density, and compared that data to the intensity of the storm.

Feeding Omar
Most of the time, a tropical storm travels across the ocean, where its winds suck up heat from the ocean and builds. But then the heat loss from the water mixes the surface layer - the warmest, least dense layer of ocean water - and dredges up colder water from the ocean below it. The colder water cools off the surface temperature, providing less energy and lessening the storm's intensity.

It made sense that conditions that would prevent the top ocean layer from cooling off would increase the intensity of storms, so Balaguru zoomed in on Omar's conditions. As expected, the ocean surface cooled the least along Omar's path as the storm peaked in intensity.

However, when Balaguru looked at the structure of the ocean along Omar's path, he saw another layer, called a barrier layer, between the surface and the colder ocean below. Omar's most intense episodes occurred when it found itself over these thick barrier layers.

But Omar was just one storm. To determine whether the barrier layer connection was real, Balaguru looked at hundreds more tropical storms.

Insulation
Balaguru and colleagues examined 587 tropical storms and cyclones between 1998 and 2007 in the western tropical Atlantic, the western Pacific and the northern Indian Oceans.

They found that the tropical storms over thick barrier layers cooled off 36 percent less than storms over areas lacking barrier layers, and barrier layer storms drew 7 percent more heat from the ocean than other storms. That translated into 50 percent more intense hurricanes on average.

The barrier layer has this effect on storms, Balaguru said, because it insulates the surface layer from the colder water below, preventing the storm's access to cooling water. When fresh water dumps into the salty ocean, it makes the surface layer less salty, creating the barrier layer below it. When a passing storm causes the surface layer to pull up water from below, the water comes from the barrier layer rather than the much colder water beneath.

The team supported their observational analysis with a computer model, comparing tropical cyclones over regions with and without barrier layers. The model found a similar decrease in cooling by the barrier layer storms, more heat transferred from the ocean to the storm, and a similar intensification.

This work addressed what happens to hurricanes now, under current climate conditions. Scientists predict that global warming will have an effect on the ocean water cycle. Future research could explore how the distribution of the barrier layers changes in a warmer world.

This work was supported by the Department of Energy Office of Science, the U.S. National Science Foundation, the National Science Foundation of China, the Chinese National Basic Research Program and the Chinese Ministry of Education. Reference: K. Balaguru, P. Chang, R. Saravanan, L. R. Leung, Z. Xu, M. Li and J.-S. Hsieh, Effect of Ocean Barrier Layers on Tropical Cyclone Intensification, Proc Natl Acad Sci U S A, Early Edition online the week of August 13, 2012.

.


Related Links
DOE/Pacific Northwest National Laboratory
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





SHAKE AND BLOW
Hurricanes can be 50 percent stronger if passing over fresh water
College Station TX (SPX) Aug 16, 2012
If a hurricane's path carries it over large areas of fresh water, it will potentially intensify 50 percent faster than those that do not pass over such regions, meaning it has greater potential to become a stronger storm and be more devastating, according to a study co-written by a group of researchers at Texas A and M University. Ping Chang, professor of oceanography and atmospheric scien ... read more


SHAKE AND BLOW
Two African boat migrants dead, 160 rescued off Malta

Deaths from landslides up to 10 times worse than thought

Iran says US quake aid was not in 'good faith'

Asia 'megacities' face infrastructure timebomb: ADB

SHAKE AND BLOW
NTU scientist invents pocket living room TV

Ball Aerospace Incorporates Enhanced Data Communication for JPSS-1 Satellite

Researchers invent system for 3-D reconstruction of sparse facial hair and skin

Nano, photonic research gets boost from new 3-D visualization technology

SHAKE AND BLOW
Warmwater shark runs aground on English channel coastline

Are Methane Hydrates Dissolving?

Global water sustainability flows through natural and human challenges

Oceans suffering from sea sickness, says study

SHAKE AND BLOW
Predictions are in for Arctic sea ice low point

Melting ice opens Northwest Passage

Tropical climate in the Antarctic

Aerial photos reveal dynamic ice sheet

SHAKE AND BLOW
Japan says food diplomacy will keep Hong Kong sweet

Plants exhibit a wide range of mechanical properties

Diversity keeps grasslands resilient to drought, climate change

Rooftop farms flourish in space-starved Hong Kong

SHAKE AND BLOW
Tropical storm Gordon forms over Atlantic: US monitors

Relief as storm leaves Philippines

Seeds of hope amidst Philippine floods

Fresh water breathes fresh life into hurricanes

SHAKE AND BLOW
Kenya keeps up search after Uganda army choppers crash

Heavy fighting near Liberian border

Eight Ugandans survive army helicopter crash; two dead

'Very little' done on Mali military action: defence minister

SHAKE AND BLOW
A new take on how evolution has shaped modern Europeans

Neolithic Man: The First Lumberjack?

New Kenyan fossils shed light on early human evolution

Early human ancestors had more variable diet




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement