Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Earth Science News .




TECTONICS
Magma in mantle has deep impact
by Staff Writers
Houston TX (SPX) Jan 11, 2013


A schematic cross section of the Earth's interior below oceanic ridges shows the conditions of magma generation. Through experimentation on mantle rocks, Rice University researchers found evidence that magma forms as deep as 250 kilometers inside the Earth's, much deeper than previously thought. Such melting would help explain apparent geophysical and geochemical contradictions that have puzzled geologists for years. Credit: Dasgupta Group/Rice University.

Magma forms far deeper than geologists previously thought, according to new research at Rice University. A group led by geologist Rajdeep Dasgupta put very small samples of peridotite under very large pressures in a Rice laboratory to determine that rock can and does liquify, at least in small amounts, as deep as 250 kilometers in the mantle beneath the ocean floor. He said this explains several puzzles that have bothered scientists.

Dasgupta is lead author of the paper to be published this week in Nature.

The mantle is the planet's middle layer, a buffer of rock between the crust - the top 5 miles or so - and the core. If one could compress millions of years of observation down to minutes, the mantle would look like a rolling mass of rising and falling material. This slow but constant convection brings materials from deep within the planet to the surface - and occasionally higher through volcanoes.

The Rice team focused on mantle beneath the ocean because that's where the crust is created and, Dasgupta said, "the connection between the interior and surface world is established." Silicate melts - aka magma - rise with the convective currents, cool and spread out to form the ocean crust. The starting point for melting has long been thought to be at 70 kilometers beneath the seafloor.

That has confounded geologists who suspected but could not demonstrate the existence of deeper silicate magma, said Dasgupta, an assistant professor of Earth science at Rice.

Scientists determine the mantle's density by measuring the speed of a seismic wave after an earthquake, from its origin to other points on the planet. These waves travel faster through solids than liquids, and geologists have been surprised to detect waves slowing down through what should be the mantle's express lane.

"Seismologists have observed anomalies in their velocity data as deep as 200 kilometers beneath the ocean floor," Dasgupta said. "Based on our work, we show that trace amounts of magma are generated at this depth, which would potentially explain that."

The research also offers clues to the bulk electrical conductivity of the oceanic mantle, he said. "The magma at such depths has a high enough amount of dissolved carbon dioxide that its conductivity is very high," Dasgupta said. "As a consequence, we can explain the conductivity of the mantle, which we knew was very high but always struggled to explain."

Because humans have not yet dug deep enough to sample the mantle directly - though some are trying - researchers have to extrapolate data on rocks carried up to the surface. A previous study by Dasgupta determined that melting in the Earth's deep upper mantle is caused by the presence of carbon dioxide. The present study shows that carbon not only leads the charge to make carbonate fluid but also helps to make silicate magma at significant depths.

The researchers also found carbonated rock melts at significantly lower temperatures than non-carbonated rock.

"This deep melting makes the silicate differentiation of the planet much more efficient than previously thought," Dasgupta said. "Not only that, this deep magma is the main agent to bring all the key ingredients for life - water and carbon - to the surface of the Earth."

In Dasgupta's high-pressure lab at Rice, volcanic rocks are windows to the planet's interior. The researchers crushed tiny rock samples that contain carbon dioxide to find out how deep magma forms.

"Our field of research is called experimental petrology," he said. "We have all the necessary tools to simulate very high pressures (up to nearly 750,000 pounds per square inch for these experiments) and temperatures. We can subject small amounts of rock samples to these conditions and see what happens."

They use powerful hydraulic presses to partially melt "rocks of interest" that contain tiny amounts of carbon to simulate what they believe is happening under equivalent pressures in the mantle. "When rocks come from deep in the mantle to shallower depths, they cross a certain boundary called the solidus, where rocks begin to undergo partial melting and produce magmas," Dasgupta said.

"Scientists knew the effect of a trace amount of carbon dioxide or water would be to lower this boundary, but our new estimation made it 150-180 kilometers deeper from the known depth of 70 kilometers," he said.

"What we are now saying is that with just a trace of carbon dioxide in the mantle, melting can begin as deep as around 200 kilometers. And when we incorporate the effect of trace water, the magma generation depth becomes at least 250 kilometers. This does not generate a large amount, but we show the extent of magma generation is larger than previously thought and, as a consequence, it has the capacity to affect geophysical and geochemical properties of the planet as a whole."

Co-authors of the paper are Rice graduate student Ananya Mallik and postdoctoral researcher Kyusei Tsuno; Research Professor Anthony Withers and Marc Hirschmann, the George and Orpha Gibson Chair of Earth and Planetary Sciences, at the University of Minnesota, and Greg Hirth, a professor of geological sciences at Brown University.

.


Related Links
Dasgupta Group
Tectonic Science and News






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECTONICS
Japan quake study sounds alarm at 'creeping fault' doctrine
Paris (AFP) Jan 09, 2013
Seismologists said Wednesday they have found clues as to why Japan's 2011 mega-earthquake occurred on a fault previously deemed to be of little threat. The findings have repercussions for the country's earthquake strategy and for other locations, including California's notorious San Andreas fault, with a similar seismic profile, they said. Hiroyuki Noda of the Japan Agency for Marine-Ear ... read more


TECTONICS
Hannover Re hit by 261-million-euro loss from Sandy

Nineteen children among 46 dead in China landslide

Haiti is recovering, leader tells quake ceremony

Philippines to move 100,000 squatters

TECTONICS
Study reveals ordinary glass's extraordinary properties

Bottom-up approach provides first characterization of pyroelectric nanomaterials

Chemical modules that mimic predator-prey and other behaviors

Government funding for 'super-material'

TECTONICS
Wales, fishermen discuss protection zones

Living cells behave like fluid-filled sponges

Taiwan mulls shipping water from China as ties improve

Interagency Report Published on Information Required for Short-Term Water Management Decisions

TECTONICS
Antarctic lake reached after millennia

A new approach to assessing future sea level rise from ice sheets

A New Way to Study Permafrost Soil, Above and Below Ground

Bering Sea study finds prey density more important to predators than biomass

TECTONICS
EU releases all data on GM corn linked to cancer

Nuclear fears contaminate sales for Japan farmers

Making whole wheat bread taste and smell more appetizing

KFC parent company sorry over China chicken scare

TECTONICS
Volcano lava flows worry Italian island

Faulty Behavior

Malawi floods kill three, displace thousands

Red-dust sunset as west Australia braces for cyclone

TECTONICS
Mali Islamists flee bases, battered by French airstrikes

U.S. frets it'll get dragged into Mali war

African forces face daunting task in Mali intervention

Sudanese army claims it killed more than 50 rebels

TECTONICS
Eliminating useless information important to learning, making new memories

Tech world crawling into the crib

Promising compound restores memory loss and reverses symptoms of Alzheimer's

Dopamine-receptor gene variant linked to human longevity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement