. .

Math detects contamination in water distribution networks
by Staff Writers
Philadelphia, PA (SPX) Dec 04, 2012
 File image.

None of us want to experience events like the Camelford water pollution incident in Cornwall, England, in the late eighties, or more recently, the Crestwood, Illinois, water contamination episode in 2009 where accidental pollution of drinking water led to heart-wrenching consequences to consumers, including brain damage, high cancer risk, and even death.

In the case of such catastrophes, it is important to have a method to identify and curtail contaminations immediately to minimize impact on the public.

A paper published earlier this month in the SIAM Journal on Applied Mathematics considers the identification of contaminants in a water distribution network as an optimal control problem within a networked system.

"Water supply networks are an essential part of our infrastructure. Sometimes the water in such a network can be contaminated, often by human error, causing the use of polluted water for drinking water production.

In the case of such a situation, it is important to have a method to identify the location of the pollution source," says the paper's author, Martin Gugat, explaining the significance of his work.

The paper considers a water distribution network with a finite number of nodes where contamination can occur in the pipes.

"The contamination spreads dynamically through the network with time. So, in order to model the system, a model of the evolution in time is necessary," explains Gugat. "In our approach, we use a partial differential equation (PDE) to model how pollution spreads in the network."

By using a PDE model for transport of contaminants, the problem of identifying the source becomes an optimal control problem. The solution is calculated using equidistant time grids, which allows one to determine the values of contamination at all potential sources on the time grid. Available data on pollution and network flow is incorporated into the model.

Employing certain assumptions for travel times through the pipes, the author uses a least-squares method to solve the problem. The least squares method provides approximate solutions to optimization problems that are relatively e?cient to compute using the tools of numerical linear algebra.

This provides a fast method to identify possible contamination sources, explains Gugat. "For a really accurate model, however, a full system of three-dimensional PDEs is necessary.

But with three-dimensional PDEs, simulation is only possible for small networks," he says. "This illustrates that to solve real life problems on real networks, there is a trade-off between the accuracy of the model and its utility."

While the method is tested numerically in the paper, additional work would involve testing the system with an existing water network to demonstrate its workability in practice.

Another future direction is toward elimination of the contaminant. "The second step after the identification of the contamination source is a strategy to flush the polluted water out of the network as fast as possible with acceptable operational cost. The development of an optimal strategy for such a rehabilitation of the water supply is an interesting question for future research," says Gugat.

"For a more detailed model of the process, more complex nonlinear PDEs could be used," he continues. "The cost of the numerical treatment of complex PDEs for large networks is prohibitive. Applied mathematics has to offer models that can be used according to the problem requirements to solve problems with network graphs of a realistic size."

Contamination Source Determination in Water Distribution Networks; Martin Gugat, SIAM Journal on Applied Mathematics, 72(6), 1772-1791 (Online publish date: 5 November 2012).

 .

 Tweet

Addis Ababa, Ethiopia (UPI) Nov 30, 2012
Ethiopia is driving to complete its massive \$4.8 billion Grand Renaissance Dam on the Blue Nile amid a long-running dispute with Egypt that will likely worsen in the months ahead unless addressed. Egypt faces destabilization as it stands to lose much of the Nile water that is its lifeblood. Ethiopia's development plans depend on an ambitious multi-dam program announced in 2011. C ... read more

 South Carolina Air National Guard's Eagle Vision IV Supports "Superstorm Sandy's" First Responders Pakistan landslides kill three soldiers, bury rescuers A month after superstorm Sandy, suffering lingers Fed official sees only slight GDP hit from Sandy Android extends global smartphone lead: survey Experiment yields possible 'spooky' matter ORNL develops lignin-based thermoplastic conversion process Sender of first text message 'amazed' 20 years on Math detects contamination in water distribution networks Fish luring devices divide Asia-Pacific tuna meet Amid Egypt crisis, Addis pushes Nile dam 'Time running out' for Kiribati as seas rise: president Adventurer to recreate Shackleton's Antarctic exploits Adventurer to recreate Shackleton's Antarctic exploits Ice Sheet Loss At Both Poles Increasing, Study Finds Definitive study highlights polar ice melt Hot springs in Alps make for luxury Swiss caviar China, EU protect each others' asparagus and ham The hungry caterpillar: Beware your enemy's enemy's enemy Increasing Drought Stress Predicted to Challenge Vulnerable Hydraulic System of Plants Six dead as Typhoon Bopha lashes Philippines 52 dead as typhoon lashes Philippines Deadly 2012 Atlantic storm season officially ends Thousands in Philippines flee ahead of typhoon S.Africa hunters try to clean up image Ethiopia to stay in Somalia until AU takeover: PM Algeria's ruling party eyes landslide in local elections Madagascar to probe rights abuses by security forces Native Americans and Northern Europeans more closely related than previously thought Long-held memory tenet challenged A 3-D light switch for the brain Scientists improve dating of early human settlement

 The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement