Earth Science News  





. Northwestern Exposing Most Deadly Infectious Diseases In 3D

illustration only
by Staff Writers
Chicago IL (SPX) Nov 01, 2007
A scientist slides on a pair of plastic 3-D glasses and an unearthly blue multi-armed creature -- an image right out of a sci-fi horror flick -- seems to leap out of the computer screen into the laboratory.

But this is no movie director's fantasy. The horror image is real. The eerie "creature" is from the deadly anthrax bacteria -- specifically one of its proteins. Scientists at Northwestern University's Feinberg School of Medicine are mapping parts of the lethal bacteria in three dimensions, exposing a new and intimate chemical portrait of the biological killer down to its very atoms.

This view of the disease will offer scientists who design drugs a fresh opening into the bacteria's vulnerabilities, and thus enable them to create drugs to disable it or vaccines to prevent it.

Anthrax is just the beginning. The Feinberg School is directing an ambitious national project that will map a rogues' gallery of 375 proteins from deadly infectious diseases over the next five years. It is being funded by a $31 million contract from the National Institute of Allergy and Infectious Diseases, part of the National Institutes of Health. The payoff could be a wave of new medicines to wipe out some of the worst scourges to ever infect the human race.

"The concept is fairly simple," said Wayne Anderson, who is leading the national project at the Feinberg School's new Center for Structural Genomics of Infectious Diseases. "If you have a lock and a key and you don't know what either one looks like, how will you design them to fit together"" The lock is Anderson's metaphor for the disease; the key is the drug or vaccine that will slip inside its atomic structure and destroy it.

To figure out where to throw the chemical equivalent of a monkey wrench into the anthrax cell -- and others --Anderson will be mapping key proteins the bacteria uses to do its work.

"We'll see what the proteins look like and see what they need to grow so scientists can use this information to design drugs to knock them out," explained Anderson, a professor of molecular pharmacology and biological chemistry. "We might look at a protein that copies a virus' or bacteria's genome so it can infect people. If we can find a chemical to stop it from working, it prevents the virus from reproducing and spreading infection."

The proteins in his lab, by the way, are not capable of triggering an infectious disease. "You need the actual virus or bacteria for that," Anderson said.

Eventually Anderson's gallery will be filled with the not-so-pretty genetic portraits of proteins from the plague, cholera, rabies, West Nile virus, viral encephalitis and Ebola, just to name a few. He'll also be looking at newly emerging diseases and drug resistant infections. His team -- which includes researchers at seven other institutions -- will churn out the three dimensional atomic structures of at least 75 disease proteins a year and quickly post their discoveries on a special website for scientists who can immediately use the information to work on new drugs.

This mega-assault on these diseases at such dizzying speed, scientifically speaking, represents a tectonic shift in how researchers are attacking infectious diseases.

Up until now, molecular pharmacologists -- the people who design new medicines -- had to work at a much slower pace because they had access to only one protein image from a disease at a time.

New state-of-the art technology has accelerated the process. "Now we are going through the genome and finding 100 proteins from a bacteria," explained Anderson. "We're looking at all of these and providing the information so scientists can look at more than one at a time."

To obtain these unusual proteins for their "photo op," Anderson first has to grow them into crystals. A few steps from his office is the "nursery," where hundreds of thousands of viral and bacterial protein crystals grow in what resemble miniature ice-cube trays. The trays are stacked in giant incubators to keep the proteins at their favorite temperature.

Because Anderson is never sure what environment will produce a crystal -- some proteins prefer more acidity or salt than others, he tries hundreds of different recipes for each one.

Viewing these proteins down to the arrangement of their atoms requires an intense x-ray beam. One of the few sites in the country with this technology is the enormous Synchrotron at Argonne National Laboratory. From the air, the Synchrotron looks like an indoor track. And, in a way, it is. The only runners, however, are electrons circling the Synchrotron, which is actually a 40-sided polygon one kilometer around. As the electrons race around the polygon, they shoot off intense x-ray beams.

Working with equipment inside a special lead-walled station to protect them from radiation, scientists place a protein crystal -- just 1/10 of a millimeter -- into the Synchrotron x-ray beam. As the x-rays scatter off the crystal, the diffraction pattern reveals the location of the protein's electrons and atoms, a process called x-ray crystallography.

In early November, the university will launch a website, www.csgid.org, for scientists who specialize in different bacteria or viruses, so they can scan the project's list of infectious diseases and suggest which proteins Anderson and his colleagues should examine. "We hope we'll get suggestions from people in the scientific community," said Anderson, who also is co-director of Northwestern's Synchrotron Research Center. "Their knowledge can be a big help to us because each bacteria makes thousands of proteins." The website also will be continuously updated to show scientists newly mapped proteins.

"We hope our effort will lay the groundwork for new drugs to treat or prevent some of the worst infectious diseases to plague our country and the world," Anderson said.

Community
Email This Article
Comment On This Article

Related Links
Northwestern University
Epidemics on Earth - Bird Flu, HIV/AIDS, Ebola




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
Staph-Killing Properties Of Clay Investigated
Buffalo NY (SPX) Oct 31, 2007
What makes some clays such powerful antimicrobial agents capable of killing MRSA and other virulent bacteria? It's a question that University at Buffalo researchers have been studying for several years. With funding from the National Institutes of Health-National Center for Complementary and Alternative Medicine, the UB geologists are studying the surface characteristics of a broad range of naturally occurring antimicrobial clays, including some clays from France to determine why they are such effective killers of bacteria.

.
Get Our Free Newsletters Via Email
  



  • Triage Study Challenges Notions of Emergency Medical Response To Disaster
  • Northrop Grumman Wins Two Contracts For AN/APN-241 Radar Program
  • California gets new 'Big One' reminder
  • New Computer Architecture Aids Emergency Response

  • Climate controversy heats up Australian election
  • Drought in southeast US fuels battle over water resources
  • White House defends 'health benefits' of climate change
  • Like It Or Not, Uncertainty And Climate Change Go Hand-In-Hand

  • DMCii Satellite Imaging Helps Dramatically Reduce Deforestation Of Amazon Basin
  • NASA Views Southern California Fires And Winds
  • A Roadmap For Calibration And Validation
  • GeoEye Contract With ITT Begins Phased Procurement Of The GeoEye-2 Satellite

  • Oil crisis exercise bares US 'impotence'
  • Terracuro Promises Carbon Neutral Living And Cleaner, Lower Energy Costs
  • Russia-led pipeline consortium rejects environment criticism
  • Green500 List To Put Supercomputing On A Diet

  • Northwestern Exposing Most Deadly Infectious Diseases In 3D
  • Staph-Killing Properties Of Clay Investigated
  • AIDS stunting southern Africa's prospects: Malawi president
  • After extinction fears, Botswana learns to live with AIDS

  • Flying Lemurs Are The Closest Relatives Of Primates
  • Dead Clams Tell Many Tales
  • Could Hairy Roots Become Biofactories
  • Dinosaur Deaths Outsourced To India

  • US Faces Burning Emissions Issue
  • Time Spent In Car Drives Up Air Pollution Exposure
  • Birth defects soar in polluted China
  • Sakhalin II Operator Vows To Fix Environmental Damage In Year

  • Research Project May Revolutionize Apparel Industry
  • World Toilet Summit opens in India
  • Europeans face mob anger over child 'abductions' in Chad
  • India's toilet champion sees human liberation in loos for all

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement