Free Newsletters - Space - Defense - Environment - Energy - Solar - Nuclear
..
. Earth Science News .




EARLY EARTH
Oxygen to the core
by Anne M Stark for LLNL News
Livermore, CA (SPX) Jan 15, 2013


An artist's conception of Earth's inner and outer core.

An international collaboration including researchers from Lawrence Livermore National Laboratory has discovered that the Earth's core formed under more oxidizing conditions than previously proposed.

Through a series of laser-heated diamond anvil cell experiments at high pressure (350,000 to 700,000 atmospheres of pressure) and temperatures (5,120 to 7,460 degrees Fahrenheit), the team demonstrated that the depletion of siderophile (also known as "iron loving") elements can be produced by core formation under more oxidizing conditions than earlier predictions.

"We found that planet accretion (growth) under oxidizing conditions is similar to those of the most common meteorites," said LLNL geophysicist Rick Ryerson.

The research appears in Science Express.

While scientists know that the Earth accreted from some mixture of meteoritic material, there is no simple way to quantify precisely the proportions of these various materials. The new research defines how various materials may have been distributed and transported in the early solar system.

As core formation and accretion are closely linked, constraining the process of core formation allows researchers to place limits on the range of materials that formed our planet, and determine whether the composition of those materials changed with time. (Was accretion heterogeneous or homogeneous?)

"A model in which a relatively oxidized Earth is progressively reduced by oxygen transfer to the core-forming metal is capable of reconciling both the need for light elements in the core and the concentration of siderophile elements in the silicate mantle, and suggests that oxygen is an important constituent in the core," Ryerson said.

The experiments demonstrated that a slight reduction of such siderphile elements as vanadium (V) and chromium (Cr) and moderate depletion of nickel (Ni) and cobalt (Co) can be produced during core formation, allowing for oxygen to play a more prominent role.

Planetary core formation is one of the final stages of the dust-to-meteorite-to-planet formation continuum. Meteorites are the raw materials for planetary formation and core formation is a process that leads to chemical differentiation of the planet.

But meteorite formation and core formation are very different processes, driven by different heat sources and occurring in very different pressure and temperature ranges.

"Our ability to match the siderophile element signature under more oxidizing conditions allows us to accrete the Earth from more common, oxidized meteoritic materials, such as carbonaceous and ordinary chondrites," Ryerson said.

The earth's magnetic field is generated in the core, and protects the Earth from the solar wind and associated erosion of the atmosphere. While the inner core of the Earth is solid, the outer core is still liquid. The ability to preserve a liquid outer core and the associated magnetic field are dependent on the composition of the core and the concentration of light elements that may reduce the melting temperature.

"By characterizing the chemical interactions that accompany separation of core-forming melts from the silicate magma ocean, we can hope to provide additional constraints on the nature of light elements in the present-day core and its melting/freezing behavior," Ryerson said.

Other teams members include Julien Siebert and Daniele Antonangeli (former LLNL postdocs) from the Universite Pierre et Marie Curie, and James Badro (a faculty scholar at LLNL) from the Institut de Physique du Globe de Paris.

.


Related Links
Lawrence Livermore National Laboratory
Explore The Early Earth at TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





EARLY EARTH
Animals flourished among lush plants during the Jurassic
Dallas TX (SPX) Jan 14, 2013
In modern ecosystems, it's widely known that animals flourish in regions where the climate and landscape produce lush vegetation. A new study set out to discover whether that same relationship held true 150 million years ago during the Late Jurassic when dinosaurs roamed the Earth. "The assumption has been that ancient ecosystems worked just like our modern ecosystems," said paleontologist ... read more


EARLY EARTH
Canada to resettle up to 5,000 Iranian, Iraqi refugees

China factory fire hidden by thick smog: media

Allianz sticks to profit goal despite Hurricane Sandy hit

Hannover Re hit by 261-million-euro loss from Sandy

EARLY EARTH
Molecular machine could hold key to more efficient manufacturing

Study reveals ordinary glass's extraordinary properties

Bottom-up approach provides first characterization of pyroelectric nanomaterials

Chemical modules that mimic predator-prey and other behaviors

EARLY EARTH
Wales, fishermen discuss protection zones

Living cells behave like fluid-filled sponges

Taiwan mulls shipping water from China as ties improve

Interagency Report Published on Information Required for Short-Term Water Management Decisions

EARLY EARTH
Antarctic lake reached after millennia

A new approach to assessing future sea level rise from ice sheets

A New Way to Study Permafrost Soil, Above and Below Ground

Bering Sea study finds prey density more important to predators than biomass

EARLY EARTH
Farmland Opportunity Includes 17,687 Great Plains Acres

Lady Beetle Diet Influences Its Effectiveness as Biocontrol Agent

Giant tobacco plants that stay young forever

Foods identified as 'whole grain' not always health

EARLY EARTH
Mozambique floods kill 2, destroy homes

Volcano lava flows worry Italian island

Faulty Behavior

Malawi floods kill three, displace thousands

EARLY EARTH
Hollande, in Gulf, defends France's Mali offensive

French marines in Mali wait for orders to join the fight

Mali Islamists flee bases, battered by French airstrikes

U.S. frets it'll get dragged into Mali war

EARLY EARTH
Eliminating useless information important to learning, making new memories

Tech world crawling into the crib

Promising compound restores memory loss and reverses symptoms of Alzheimer's

Dopamine-receptor gene variant linked to human longevity




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement