. Earth Science News .




.
WATER WORLD
Researchers explore plankton's shifting role in deep sea carbon storage
by Staff Writers
San Francisco CA (SPX) Oct 18, 2011

File image.

The tiny phytoplankton Emiliania huxleyi, invisible to the naked eye, plays an outsized role in drawing carbon from the atmosphere and sequestering it deep in the seas. But this role may change as ocean water becomes warmer and more acidic, according to a San Francisco State University research team.

In a study published this week in the journal Global Change Biology, SF State Assistant Professor of Biology Jonathon Stillman and colleagues show how climate-driven changes in nitrogen sources and carbon dioxide levels in seawater could work together to make Emiliania huxleyi a less effective agent of carbon storage in the deep ocean, the world's largest carbon sink.

Changes to this massive carbon sink could have a critical effect on the planet's future climate, Stillman said, especially as atmospheric carbon dioxide levels continue to rise sharply as a result of fossil fuel burning and other human activities.

While floating free in the sunny top layers of the oceans, the phytoplankton develop elaborate plates of calcified armor called coccoliths.

The coccoliths form a hard and heavy shell that eventually sinks to the ocean depths. "About 80 percent of inorganic carbon trapped down there is from coccoliths like these," said Stillman.

Stillman and his colleagues wanted to discover how ocean acidification and changes in the ocean's nitrogen cycle-both hallmarks of climate warming-might effect coccolith development. So they raised more than 200 generations of Emiliania huxleyi in the lab, adjusting carbon dioxide levels and the type of nitrogen in the phytoplankton's seawater bath.

They found that high levels of carbon dioxide-which make the water more acidic-along with a shift in the prevailing nitrogen type from nitrates to ammonium-"had a synergistic effect" on the phytoplankton's biology and growth.

In particular, coccoliths formed under conditions of high carbon dioxide and high ammonium levels were incomplete or hollow, and contained less than the usual amount of inorganic carbon, the researchers noted.

"The ratio of inorganic to organic carbon is important," Stillman explained. "As inorganic carbon increases, it adds more ballast to the hard shell, which makes it sink and makes it more likely to be transported to the deep ocean. Without this, the carbon is more likely to be recycled into the Earth's atmosphere."

"Our results suggest in the future there will be overall lower amounts of calcification and overall lower amount of transport of carbon to the deep ocean," he added.

Emiliania huxleyi typically use nitrates to make proteins, but this form of nitrogen may be in shorter supply for the phytoplankton as the world's oceans grow warmer and more acidic, Stillman and colleagues suggest.

In the open ocean, nitrates are upwelled from deep waters, but a thickening layer of warmer surface water could inhibit this upwelling. At the same time, the warmer temperatures favor bacteria that turn recycled nitrogen from surface waters and the atmosphere into ammonium, and acidification inhibits the bacteria that turn ammonium into nitrate.

"It is likely that in the future, the ocean surface will contain more ammonium," which the phytoplankton will assimilate instead of nitrates, Stillman suggested. "Metabolizing nitrogen as ammonium versus nitrates requires different biochemical constituents that impact how well the cells make their coccoliths. They will survive just fine, but their biology will be different as a result."

The study by Stillman and colleagues is the first to look at the intertwined effects of ocean acidification and changes in nitrogen on phytoplankton like Emiliania huxleyi. It's also one of the first studies to observe these effects continuously over a long time scale, "so the responses of the phytoplankton are likely what we'll see in the ocean itself," Stillman said.

Stephane Lefebrve, the SF State postdoctoral student who developed the experiments for the study, said he is now looking for phytoplankton genes that "will help us to build the genetic blueprint of their responses to elevated carbon dioxide and a nitrogen source"

Lefebvre, Ina Benner, Alexander Parker, Michelle Drake, Pascale Rossignol, Kristine Okimura, Tomoko Komada, and Edward Carpenter, all from SF State's Romberg Tiburon Center for Environmental Studies, were co-authors on the Global Change Biology study.

"Nitrogen source and pCO2 synergistically affect carbon allocation, growth and morphology of the coccolithophore Emiliania huxleyi: implications of ocean acidification for the carbon cycle," was published online in October by the journal Global Change Biology.

Related Links
San Francisco State University
Water News - Science, Technology and Politics




.
.
Get Our Free Newsletters Via Email
...
Buy Advertising Editorial Enquiries




.

. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle



WATER WORLD
Far more bluefin sold than reported caught: report
Paris (AFP) Oct 18, 2011
More than twice as many tonnes of Atlantic bluefin tuna were sold last year compared with official catch records for this threatened species, according to a report released on Tuesday. This "bluefin gap" occurred despite enhanced reporting and enforcement measures introduced in 2008 by the 48-member International Commission for the Conservation of Atlantic Tunas (ICCAT), which sets annual qu ... read more


WATER WORLD
A team for an emergency

Fukushima city begins decontamination of homes

Gas blast kills 11 miners in north China: Xinhua

Radioactive emissions from Fukushima plant fall: TEPCO

WATER WORLD
IBM stock sags on revenue target miss

Samsung seeks iPhone sales ban in Japan, Australia

A hidden order unraveled

RIM out to rev up BlackBerry with new apps

WATER WORLD
Researchers explore plankton's shifting role in deep sea carbon storage

Sea levels will continue to rise for 500 years

US rivers and streams saturated with carbon

War-damaged power cable cuts Tripoli water supply

WATER WORLD
CryoSat rocking and rolling

US probes mystery disease killing Arctic seals

NASA Continues Critical Survey of Antarctica's Changing Ice

Research shows how life might have survived 'snowball Earth'

WATER WORLD
Southern Africian farmers using fertilizer trees to improve food security

Chinese man charged in theft of US trade secrets

S Africa to release report on Iraq's oil-for-food

Method of studying roots rarely used in wetlands improves ecosystem research

WATER WORLD
Earthquakes generate big heat in super-small areas

Russian Ship Finds Tsunami Debris where Scientists Predicted

Central America toll from rains climbs above 90

Wary Bangkok bolsters flood barriers

WATER WORLD
Kenyan forces advance on strategic Somali rebel bases

Car bomb rocks Mogadishu during Kenyan ministers visit

Kenyan forces hunt militants deep inside Somalia

Planned Tanzanian soda ash plant threatens flamingoes

WATER WORLD
Children prefer cooperation

Differences in jet lag severity could be rooted in how circadian clock sets itself

100,000-year-old ochre toolkit and workshop discovered in South Africa

Children, not chimps, choose collaboration


.

The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement