Subscribe free to our newsletters via your
. Earth Science News .




Subscribe free to our newsletters via your




















CARBON WORLDS
Researchers find a surprise just beneath the surface in carbon dioxide experiment
by Staff Writers
Berkeley CA (SPX) Jun 16, 2017


Scientists are seeking ways to reduce environmentally harmful levels of carbon dioxide from vehicle emissions and other sources by improving chemical processes that convert carbon dioxide gas into ethanol (molecular structure shown here) for use in liquid fuels, for example. X-ray experiments at Berkeley Lab have helped to show what's at work in the early stages of chemical reactions that convert carbon dioxide and water into ethanol.

While using X-rays to study the early stages of a chemical process that can reformulate carbon dioxide into more useful compounds, including liquid fuels, researchers were surprised when the experiment taught them something new about what drives this reaction.

An X-ray technique at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab), coupled with theoretical work by a team at the California Institute of Technology, Pasadena (Caltech), revealed how oxygen atoms embedded very near the surface of a copper sample had a more dramatic effect on the early stages of the reaction with carbon dioxide than earlier theories could account for.

This information could prove useful in designing new types of materials to further enhance reactions and make them more efficient in converting carbon dioxide into other products. Large concentrations of carbon dioxide are harmful to health and the environment, so researchers have been pursuing ways to remove it from the atmosphere and safely store it or chemically convert it into more beneficial forms.

To explain what was at work, the research team developed computer models, and revised existing theories to explain what they were witnessing in experiments. Their results were published online June 12 in the Proceedings of the National Academy of Sciences journal.

Copper is a common catalyst - a material used to activate and speed up chemical reactions - and, although it is not efficient, it aids in the production of ethanol when exposed to carbon dioxide and water. In the studied reaction, the copper helps to chemically break down and reassemble carbon dioxide and water molecules into other molecules.

"We found more than we thought we were going to find from this fundamental investigation," said Ethan Crumlin, a scientist at Berkeley Lab's Advanced Light Source (ALS) who co-led the study with Joint Center for Artificial Photosynthesis (JCAP) researchers Junko Yano, at Berkeley Lab, and William Goddard III, at Caltech.

The ALS is an X-ray research facility known as a synchrotron that has dozens of experimental beam lines for exploring a wide range of microscopic properties in matter, and JCAP is focused on how to convert carbon dioxide, water, and sunlight into renewable fuels.

"Having oxygen atoms just beneath the surface - a suboxide layer - is a critical aspect to this," Crumlin said. The X-ray work brought new clarity in determining the right amount of this subsurface oxygen - and its role in interactions with carbon dioxide gas and water - to improve the reaction.

"Understanding this suboxide layer, and the suboxide in contact with water, is integral in how water interacts with carbon dioxide" in this type of reaction, he added.

Goddard and his colleagues at Caltech worked closely with Berkeley Lab researchers to develop and refine a quantum mechanics theory that fit the X-ray observations and explained the electronic structure of the molecules in the reaction.

"This was a good looping, iterative process," Crumlin said. "Just being curious and not settling for a simple answer paid off. It all started coming together as a cohesive story."

Goddard said, "This back-and forth between theory and experiment is an exciting aspect of modern research and an important part of the JCAP strategy to making fuels from carbon dioxide." The Caltech team used computers to help understand how electrons and atoms rearrange themselves in the reaction.

At Berkeley Lab's ALS, researchers enlisted an X-ray technique known as APXPS (ambient pressure X-ray photoelectron spectroscopy as they exposed a thin foil sheet of a specially treated copper - known as Cu(111) - to carbon dioxide gas and added water at room temperature.

In proceeding experiments they heated the sample slightly in oxygen to vary the concentration of embedded oxygen in the foil, and used X-rays to probe the early stages of how carbon dioxide and water synergistically react with different amounts of subsurface oxide at the surface of the copper.

The X-ray studies, planned and performed by Marco Favaro, the lead author of the study, revealed how carbon dioxide molecules collide with the surface of the copper, then hover above it in a weakly bound state. Interactions with water molecules serve to bend the carbon dioxide molecules in a way that allows them to strip hydrogen atoms away from the water molecules. This process eventually forms ethanol, a type of liquid fuel.

"The modest amount of subsurface oxygen helps to generate a mixture of metallic and charged copper that can facilitate the interaction with carbon dioxide and promote further reactions when in the presence of water," Crumlin said.

Copper has some shortcomings as a catalyst, Yano noted, and it is currently difficult to control the final product a given catalyst will generate.

"If we know what the surface is doing, and what the model is for this chemical interaction, then there is a way to mimic this and improve it," Yano said. The ongoing work may also help to predict the final output of a given catalyst in a reaction. "We know that copper works - what about different copper surfaces, copper alloys, or different types of metals and alloys?"

Research Report

CARBON WORLDS
Seeing electrons surfing the waves of light on graphene
Madrid, Spain (SPX) Jun 12, 2017
Researchers have studied how light can be used to "see" the quantum nature of an electronic material. They managed to do that by capturing light in a net of carbon atoms and slowing down light it down so that it moves almost as slow as the electrons in the graphene. Then something special happens: electrons and light start to move in concert, unveiling their quantum nature at such large scale th ... read more

Related Links
Lawrence Berkeley National Laboratory
Carbon Worlds - where graphite, diamond, amorphous, fullerenes meet

Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

CARBON WORLDS
Portugal forest fire kills 24, injures 20

As homelands devastated, Indonesian tribe turns to Islam

Europe's dilemma - how to deal with returning jihadists

China says kindergarten blast was bomb, suspect dead

CARBON WORLDS
Changing the color of laser light on the femtosecond time scale

Researchers create 3-D printed tensegrity objects capable of dramatic shape change

New form of carbon that's hard as a rock, yet elastic, like rubber

Northrop Grumman tests flat-panel radar

CARBON WORLDS
Researchers find a surprise just beneath the surface in carbon dioxide experiment

Hawaiian canoe comes home after epic round-the-world odyssey

Global coral bleaching may be ending, US agency says

Amazonia's future will be jeopardized by dams

CARBON WORLDS
Early animal evolution got off to a hot start before Ice Age slowdown

Finding new homes won't help Emperor penguins cope with climate change

Blight or blessing? How the wolverine embodies Arctic diversity

Domes of frozen methane may be warning signs for new blow-outs

CARBON WORLDS
Study: To save planet, humans must alter diet and farming methods

Carrefour pulls dog meat from shelves in China

One million sign petition for EU weedkiller ban

Call for more electric fences to stop elephants destroying Gabon crops

CARBON WORLDS
Four missing after tsunami hits Greenland

9 children killed as houses collapse in rains in Niger: officials

Rising sea levels will boost moderate floods in some areas, severe floods in others

Five dead after strong quake hits Guatemala

CARBON WORLDS
Five Mali soldiers killed in attack on military camp

C. Africa govt inks peace deal with rebel groups

France says UN likely to support Sahel anti-jihadist force

Qatar withdraws peacekeepers from Djibouti-Eritrea border

CARBON WORLDS
Too much brain activity may contribute to memory, attention impairments

Chinese gays hear wedding bells as Taiwan move fuels hope

In tense times, top conductor creates UN of orchestras

Czech cave dig reveals details of Neanderthal-human transition




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement