Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



SHAKE AND BLOW
Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe
by Staff Writers
Corvallis OR (SPX) Jun 05, 2017


Researchers carry a sediment core. Image courtesy Tim Fulton, IODP-JRSO.

Sediment that eroded from the Himalayas and Tibetan plateau over millions of years was transported thousands of kilometers by rivers and in the Indian Ocean - and became sufficiently thick over time to generate temperatures warm enough to strengthen the sediment and increase the severity of the catastrophic 2004 Sumatra earthquake.

The magnitude 9.2 earthquake on Dec. 26, 2004, generated a massive tsunami that devastated coastal regions of the Indian Ocean. The earthquake and tsunami together killed more than 250,000 people making it one of the deadliest natural disasters in history.

An international team of scientists that outlined the process of sediment warming says the same mechanism could be in place in the Cascadia Subduction Zone off the Pacific Northwest coast of North America, as well as off Iran, Pakistan and in the Caribbean. Results of the research, which was conducted as part of the International Ocean Discovery Program, are being published this week in the journal Science.

"The 2004 Indian Ocean tsunami was triggered by an unusually strong earthquake with an extensive rupture area," said expedition co-leader Lisa McNeill, an Oregon State University graduate now at the University of Southampton.

"We wanted to find out what caused such a large earthquake and tsunami, and what it might mean for other regions with similar geological properties."

The research team sampled for the first time sediment and rocks from the tectonic plate that feeds the Sumatra subduction zone. From the research vessel JOIDES Resolution, the team drilled down 1.5 kilometers below the seabed, measured different properties of the sediments, and ran simulations to calculate how the sediment and rock behaves as it piles up and travels eastward 250 kilometers toward the subduction zone.

"We discovered that in some areas where the sediments are especially thick, dehydration of the sediments occurred before they were subducted," noted Marta Torres, an Oregon State University geochemist and co-author on the study.

"Previous earthquake models assumed that dehydration occurred after the material was subducted, but we had suspected that it might be happening earlier in some margins.

"The earlier dehydration creates stronger, more rigid material prior to subduction, resulting in a very large fault area that is prone to rupture and can lead to a bigger and more dangerous earthquake."

Torres explained that when the scientists examined the sediments, they found water between the sediment grains that was less salty than seawater only within a zone where the plate boundary fault develops, some 1.2 to 1.4 kilometers below the seafloor.

"This along with some other chemical changes are clear signals that it was an increase in temperature from the thick accumulation of sediment that was dehydrating the minerals," Torres said.

Lead author Andre Hupers of the University of Bremen in Germany said that the discovery will generate new interest in other subduction zone sites that also have thick, hot sediment and rock, especially those areas where the hazard potential is unknown.

The Cascadia Subduction Zone is one of the most widely studied sites in the world and experts say it may have experienced as many as two dozen major earthquakes over the past 10,000 years.

The sediment at the Cascadia deformation front is between 2.5 and 4.0 kilometers thick, which is somewhat less than the 4-5 kilometer thickness of the Sumatra region. However, because the subducting plate at Cascadia is younger when the plate arrives at the subduction zone, the estimated temperatures at the fault surface are about the same in both regions.

SHAKE AND BLOW
Study explains severity of 9.2 magnitude Sumatra earthquake
Washington (UPI) May 25, 2017
New research suggests ancient Himalayan sediments account for the severity of the 2004 earthquake in Sumatra. The epicenter of the magnitude 9.2 earthquake occurred just west of Sumatra, Indonesia, in December 2004. It was generated by the subduction of the Indian Plate beneath the Burma Plate and triggered a series of tsunamis that obliterated coastal communities throughout Southeast A ... read more

Related Links
Oregon State University
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Sri Lanka targets unauthorised builders after monsoon deaths

GMV to supply Copernicus services in support to EU external action

Sri Lanka hails record military deployment as toll hits 213

European Reassurance Initiative requests billion-dollar budget increase

SHAKE AND BLOW
Bamboo inspires optimal design for lightness and toughness

Model for 2-D materials based RRAM found

New scaling law predicts how wheels drive over sand

Space junk could destroy satellites, hurt economies

SHAKE AND BLOW
Off US coast, Tangier Island disappearing under water

Envoys wade in to help US waters despite Trump climate snub

Fish uses special lips to eat razor-sharp, venomous coral

Understanding a river's 'thermal landscape' may be the key to saving it

SHAKE AND BLOW
How the Arctic Ocean became saline

Antarctic ice rift close to calving, after growing 17km in 6 days - latest data from ice shelf

Arctic peoples' climate pleas fell on deaf ears

Previously, on Arctic warming

SHAKE AND BLOW
Myanmar's edible bird nest industry comes home to roost

As temperatures rise, plants take up more carbon

Brexit risks disrupting EU agriculture market, experts warn

Scientists discover plant 'brain' controlling seed development

SHAKE AND BLOW
2017 hurricane season follows year of extremes

One dead, two missing as Taiwan battles floods

Sediment from Himalayas may have made 2004 Indian Ocean earthquake more severe

Deep magma reservoirs are key to volcanic 'super-eruptions'

SHAKE AND BLOW
African Union offers full support for UN climate deal

EU to give 50 million euros for African force in Sahel

China rejects Uganda ivory trafficking claims against diplomats

One dead after Gambian protesters clash with W. African troops

SHAKE AND BLOW
Tourists risk getting bit when they mistake monkey aggression for affection

Ancient grains offer insights into the birth and growth of the world's oldest cities

Fossil skeleton confirms earliest primates were tree dwellers

Springs were critical water sources for early humans in East Africa, Rutgers study finds




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement