Earth Science News  





. Study Identifies Food-Related Clock In The Brain

illustration only
by Staff Writers
Boston MA (SPX) May 28, 2008
In investigating the intricacies of the body's biological rhythms, scientists at Beth Israel Deaconess Medical Center (BIDMC) have discovered the existence of a "food-related clock" which can supersede the "light-based" master clock that serves as the body's primary timekeeper.

The findings, which appear in the May 23 issue of the journal Science, help explain how animals adapt their circadian rhythms in order to avoid starvation, and suggest that by adjusting eating schedules, humans too can better cope with changes in time zones and nighttime schedules that leave them feeling groggy and jet-lagged.

"For a small mammal, finding food on a daily basis is a critical mission," explains the study's senior author Clifford Saper, MD, PhD, Chairman of the Department of Neurology at BIDMC and James Jackson Putnam Professor of Neurology at Harvard Medical School.

"Even a few days of starvation is a common threat in natural environments and may result in the animal's death."

The suprachiasmatic nucleus (SCN), a group of cells in the brain's hypothalamus, serves as the body's primary biological clock. The SCN receives signals about the light-dark cycle through the visual system, and passes that information along to another cell group in the hypothalamus known as the dorsomedial nucleus (DMH). The DMH then organizes sleep-wake cycles, as well as cycles of activity, feeding and hormones.

"When food is readily available," explains Saper, "this system works extremely well. Light signals from the retina help establish the animals' circadian rhythms to the standard day-night cycle." But, if food is not available during the normal wake period, animals need to be able to adapt to food that is available when they are ordinarily asleep.

In order to survive, animals appear to have developed a secondary "food-related" master clock. "This new timepiece enables animals to switch their sleep and wake schedules in order to maximize their opportunity of finding food," notes Saper, who together with lead author Patrick Fuller, PhD, HMS Instructor in Neurology and coauthor Jun Lu, MD, PhD, HMS Assistant Professor of Neurology, set out to determine exactly where this clock was located.

"In addition to the oscillator cells in the SCN, there are other oscillator cells in the brain as well as in peripheral tissues like the stomach and liver that contribute to the development of animals' food-based circadian rhythms," says Saper. "Dissecting this large intertwined system posed a challenge."

To overcome this obstacle, the authors used a genetically arrhythmic mouse in which one of the key genes for the biological clock, BMAL1, was disabled.

They next placed the gene for BMAL1 into a viral vector which enabled them to restore a functional biological clock to only one spot in the brain at a time. Through this step-by-step analysis, the authors uncovered the feeding entrained clock in the DMH.

"We discovered that a single cycle of starvation followed by refeeding turns on the clock, so that it effectively overrides the suprachiasmatic nucleus and hijacks all of the circadian rhythms onto a new time zone that corresponds with food availability," says Saper. And, he adds, the implications for travelers and shift workers are promising.

"Modern day humans may be able to use these findings in an adaptive way. If, for example, you are traveling from the U.S. to Japan, you are forced to adjust to an 11-hour time difference," he notes.

"Because the body's biological clock can only shift a small amount each day, it takes the average person about a week to adjust to the new time zone. And, by then, it's often time to turn around and come home."

But, he adds, by adapting eating schedules, a traveler might be able to engage his second "feeding" clock and adjust more quickly to the new time zone.

"A period of fasting with no food at all for about 16 hours is enough to engage this new clock," says Saper. "So, in this case, simply avoiding any food on the plane, and then eating as soon as you land, should help you to adjust - and avoid some of the uncomfortable feelings of jet lag."

Community
Email This Article
Comment On This Article

Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
Beth Israel Deaconess Medical Center
All About Human Beings and How We Got To Be Here




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
Walker's World: Russia's 'hypermortality'
Paris (UPI) May 27, 2008
An alarming new word has been born. It is "hypermortality," which might be defined as an extraordinary tendency toward death. It jumps from the first page of the U.N. Development Program report entitled "Demographic Policy in Russia."

.
Get Our Free Newsletters Via Email
  



  • 420,000 houses collapse in China aftershocks: state media
  • International aid reaches one million people in Myanmar: UN
  • WFP chief urges swift distribution of aid in Myanmar
  • Thunderstorms may add to woes of China's quake survivors

  • EARLINET - European Research For Climatic Change Analysis
  • G8 ministers pledge 'strong will' on climate amid doubts
  • Japan pushes its 'sectoral' approach in climate talks
  • Warm winds comfort climate change models: study

  • Seeing Clearly Despite The Clouds
  • NASA/Northrop Grumman Agreement Opens Door To Earth Science Research
  • Joint NASA-French Satellite To Track Trends In Sea Level And Climate
  • GeoEye Scheduled To Launch Next-Gen EO Satellite

  • Group asks Canada to halt sale of Arctic gas and oil rights
  • Connecting The Slippery Oily Dots Of The 2008 Energy Crisis
  • Western Wind Offered 230 Million Dollars For Windstar Project By Major US Energy Company
  • USA Geothermal Forms Exploration Joint Venture In Nevada

  • China in emergency vaccination drive in quake-hit areas
  • Japan PM pledges 560 million dollars to fight diseases
  • Lab breakthrough seen in lethal dengue fever
  • Tracking Influenza's Every Movement

  • Over 50 Percent Of Oceanic Shark Species Threatened With Extinction
  • Scientists Reveal The Lifestyle Evolution Of Wild Marine Bacteria
  • Real-Time Observation Of The DNA-Repair Mechanism
  • Understanding The Functions Of Diversity

  • Naples officials sent illegal waste for dumping in Germany: probe
  • Protesters allow experts in to potential new Naples-area dump
  • Naples locals block site to protest rubbish dumping
  • Berlusconi's plan to tackle rubbish crisis hit by protests

  • Walker's World: Russia's 'hypermortality'
  • Study Identifies Food-Related Clock In The Brain
  • Mathematicians Reveal Secrets Of The Ancient And Universal Art Of Symmetry
  • New Statistical Method Reveals Surprises About Our Ancestry

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement