Earth Science News  





. Study Identifies Key Player In The Body's Immune Response To Chronic Stress

Evidence suggests that astronauts may suffer increased rates of infection after flight. Through an animal study, Shi and colleagues simulated spaceflight conditions to investigate its effects on the immune system. They found that infection-fighting white blood cells inappropriately die off in large numbers, leading to immune-organ atrophy and the decreased ability of the immune system to protect the body from illness.
by Staff Writers
Houston TX (SPX) Sep 10, 2007
Osteopontin (OPN), a protein molecule involved in many different cellular processes, plays a significant role in immune deficiency and organ atrophy following chronic physiological stress, resulting in increased susceptibility to illness. These findings appear in the September 4th issue of the Proceedings of the National Academy of Sciences.

The study is supported by the National Space Biomedical Research Institute (NSBRI), the Busch Biomedical Research Grant, National Multiple Sclerosis Society, and Rutgers Technology Commercialization Fund. Authors on the paper include Dr. Yufang Shi, investigator on NSBRI's Radiation Effects Team and professor of molecular genetics, microbiology and immunology at the University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School, Dr. David T. Denhardt, one of the discoverers of OPN, professor of cell biology and neuroscience at Rutgers, the State University of New Jersey, and Kathryn X. Wang, graduate student in the Rutgers Graduate Program in Cell and Developmental Biology.

"Following periods of prolonged physical stress such as when astronauts live in microgravity, white blood cells that fight disease, called lymphocytes, die at an increased rate and immune system organs like the thymus and spleen lose mass and begin to atrophy," said Dr. Shi.

Immune system organs include the thymus, spleen, lymph nodes and bone marrow.

"By determining the role of lymphocyte death in a stressed immune system, we may be able to develop therapies to maintain a healthy immune system, which can help in space and in clinical settings to prevent and treat malignancy and infections," Shi said.

It is known that spaceflight and long periods of physiological stress cause changes in the immune system. "Until now, the role of OPN in the stress response of immune organs has never been examined," Shi said.

Evidence suggests that astronauts may suffer increased rates of infection after flight. Through an animal study, Shi and colleagues simulated spaceflight conditions to investigate its effects on the immune system. They found that infection-fighting white blood cells inappropriately die off in large numbers, leading to immune-organ atrophy and the decreased ability of the immune system to protect the body from illness.

The team studied two types of mice, one group with the normal OPN gene and another group lacking this gene. The mice experienced three days of hindlimb unloading, a widely used technique to simulate the physiologic changes that astronauts experience during spaceflight. With this technique, body fluids shift similarly to how they do in microgravity (toward the head instead of toward the extremities) and immune system changes occur.

Mice of both types made up the control groups, which did not undergo unloading.

After three days, the researchers compared the mice with normal OPN and the OPN-lacking mice. The normal OPN mice experienced weight loss, spleen and thymus atrophy, and a reduced number of white blood cells. In addition, increased levels of corticosterone, a steroid that contributes to the death of white blood cells, were found only in the normal OPN mice studied. By contrast, the mice lacking the OPN gene showed statistically insignificant changes in weight and the levels of corticosterone, and were more similar to the control group.

"White blood cell death in the spleen and thymus was evident only in the mice with normal OPN," Shi said. "Since white blood cells were dying rather than increasing, that indicates partly why immune system organs atrophy during prolonged physical stress."

The team concluded that under chronic physical stress, OPN must be present for the increase in corticosterone, which leads to atrophy and white blood cell death.

Shi hopes that this finding will lead to preventative treatments in the future.

"Already we're researching an antibody that can remove OPN from blood serum. Perhaps one day, we can turn this research into a therapy to counteract white blood cell death in immune system organs and keep humans healthier during times of prolonged physical stress," Shi said.

Shi and colleagues want to better understand the mechanisms through which stress affects the immune system, so they can prevent illness in space and help those who suffer from illness following physiological stress here on Earth.

NSBRI projects address space health concerns such as bone and muscle loss, cardiovascular changes, balance problems, sleep disturbances, radiation exposure, nutrition, physical fitness, rehabilitation, remote-treatment medical technologies, and neurobehavioral and psychosocial factors. Research findings will also impact the understanding and treatment of similar medical conditions experienced on Earth. NSBRI, funded by NASA, is a consortium of institutions studying the health risks related to long-duration spaceflight. The Institute's science, technology and education projects take place at more than 70 institutions across the United States.

Community
Email This Article
Comment On This Article

Related Links
National Space Biomedical Research Institute
All About Human Beings and How We Got To Be Here




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
Human Testes May Multiply Mutations
Los Angeles CA (SPX) Sep 04, 2007
The testes in humans may act as mutation multipliers that raise the odds of passing improved DNA to offspring - but that can also backfire by increasing the frequency of certain diseases. The new theory is part of a study, appearing in PLOS Biology, that tries to explain the puzzlingly high frequency of Apert syndrome, a genetic cranial deformity found in approximately one out of every 70,000 newborns.

.
Get Our Free Newsletters Via Email
  



  • Japan holds disaster drills to prepare for big quake
  • Devastated New Orleans mourns Katrina dead two years on
  • NKorea searches for fugitives after floods: aid group
  • Death toll mounts as floods, heat wave batter US

  • China leads charge against Australian climate pact
  • Start of ALOS Kyoto And Carbon Initiative By The ALOS Daichi
  • UN conference highlights Spain's threat from desertification
  • Half-price Big Mac to fight global warming proves big hit in Japan

  • Key Sensor For Northrop Grumman NPOESS Program Passes Critical Structural Test
  • Air France And ESA Join To Offer Passengers Unique View Of Voyage
  • NASA Scientist Treks To Burning Man Festival
  • European Hot Spots And Fires Identified From Space

  • Pacific power companies band together to cut fuel costs
  • Iran admits hurt by high domestic oil consumption
  • Chinese power chief gets life for graft
  • Analysis: C. Asia's electricity sector

  • Researchers Discover New Strategies For Antibiotic Resistance
  • Yale Scientists Use Nanotechnology To Fight E. Coli
  • Pig disease spreads through China
  • Discovery Could Help Stop Malaria At Its Source - The Mosquito

  • Bacterial To Animal Gene Transfers Widespread; Implications For Evolution, Control Of Diseases And Pests
  • Reporter films China's own Loch Ness monster: report
  • LSU Professor Looks For Life In And Under Antarctic Ice
  • Large Asteroid Breakup Likely Source Of Mass Extinction Impact 65 Million Years Ago

  • MIT Unraveling Secrets Of Red Tide
  • Malaysia culls 50,000 pigs over smell, pollution
  • Boffins in Ireland claim chewing gum breakthrough
  • Biosensors To Probe The Metals Menace

  • Study Identifies Key Player In The Body's Immune Response To Chronic Stress
  • Human Testes May Multiply Mutations
  • Researchers Propose New Molecule To Explain Circadian Clock
  • How Much Will You Pay To Live Near People Like You

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement