Earth Science News  





.
ABOUT US
Tibetan Adaptation To Altitude Took Less Than 3,000 Years

File image.
by Staff Writers
Berkeley CA (SPX) Jul 07, 2010
A comparison of the genomes of 50 Tibetans and 40 Han Chinese shows that ethnic Tibetans split off from the Han less than 3,000 years ago and since then rapidly evolved a unique ability to thrive at high altitudes and low oxygen levels.

The genome-wide comparison, performed by evolutionary biologists at the University of California, Berkeley, uncovered more than 30 genes with DNA mutations that have become more prevalent in Tibetans than Han Chinese, nearly half of which are related to how the body uses oxygen. One mutation in particular spread from fewer than 10 percent of the Han Chinese to nearly 90 percent of all Tibetans.

"This is the fastest genetic change ever observed in humans," said Rasmus Nielsen, UC Berkeley professor of integrative biology, who led the statistical analysis. "For such a very strong change, a lot of people would have had to die simply due to the fact that they had the wrong version of a gene."

The widespread mutation in Tibetans is near a gene called EPAS1, a so-called "super athlete gene" identified several years ago and named because some variants of the gene are associated with improved athletic performance, Nielsen said. The gene codes for a protein involved in sensing oxygen levels and perhaps balancing aerobic and anaerobic metabolism.

The new findings could steer scientists to till-now unknown genes that play a role in how the body deals with decreased oxygen, and perhaps explain some diseases, including schizophrenia and epilepsy, associated with oxygen deprivation in the womb, he said.

Nielsen and his colleagues in China and Europe report their findings in the July 2 issue of the journal Science.

Nielsen, a computational evolutionary biologist, mines genomic information to discover genetic changes driven by natural selection as humans and animals have adapted to new environments. Changes in the frequency of DNA mutations are one clue.

"You look for rapid evolution in genes because there must be something important about that gene forcing it to change so fast," he said. "The new finding is really the first time evolutionary information alone has helped us pinpoint an important function of a gene in humans."

Adaptation to low oxygen levels has allowed many peoples, from Andeans to Tibetans, to live at high altitude. When people from lower elevations move above about 13,000 feet, where oxygen levels are about 40 percent lower than at sea level, they typically tire easily, develop headaches, produce babies with lower birth weights and have a higher infant mortality rate.

Tibetans have none of these problems, despite lower oxygen saturation in the blood and lower hemoglobin levels. Hemoglobin, which gives blood its red color, binds and transports oxygen to the body's tissues.

Nielsen used genome data produced by the Beijing Genomics Institute (BGI) in Shenzhen, China's flagship genome center, to tease out the genetic changes associated with these physiological changes.

"We're looking for footprints of past selection to find something functional in our genome," Nielsen said

BGI researchers obtained DNA from 50 Tibetans living in the Tibet Autonomous Region of China and 40 Han Chinese from Beijing. The Tibetans lived in two villages located at elevations of 4,300 meters (14,100 feet) and 4,600 meters (15,100 feet).

All reported at least three generations of ancestors had lived at the same site. After obtaining informed consent, the Chinese researchers took blood samples from the participants and measured oxygen saturation, red blood cell concentration and hemoglobin content in their blood.

Back in the lab, the BGI team isolated only the active genes, or exons, from each individual, then used next-generation sequencing technology to sequence these so-called exomes.

This involved cutting the DNA into many short pieces, sequencing each about 18 times with state-of-the-art Illumina sequencing machines, and then using overlaps to help reassemble the complete genome of each person. That work was directed by Jun Wang of BGI and the University of Copenhagen in Denmark.

Nielsen and post-doctoral fellows John E. Pool, Emilia-Huerta Sanchez and Nicolas Vinckenbosch conducted the analysis at UC Berkeley, locating all point mutations, called single-nucleotide polymorphisms (SNPs), in the 90 genomes and then comparing Tibetan and Han separately to a control group of 100 Europeans (Danes).

The analysis revealed that the common ancestors of Tibetans and Han Chinese split into two populations about 2,750 years ago, with the larger group moving to the Tibetan plateau. That group eventually shrank, while the low-elevation Han population expanded dramatically.

Today, the Han Chinese are the dominant ethnic group in mainland China. The Tibetan branch either merged with the people's already occupying the Tibetan plateau, or replaced them.

"We can't distinguish intermixing and replacement," Nielsen said. "The Han Chinese and Tibetans are as different from one another as if the Han completely replaced the Tibetans about 3,000 years ago."

The Tibetan and Han Chinese genomes are essentially identical in terms of the frequency of polymorphisms in the roughly 20,000 genes, though some 30 genes stood out because of dramatic differences between the Tibetans and the Han.

"We made a list of the genes that changed the most," Nielsen said, "and what was fascinating was that, bing!, at the top of that list was a gene that had changed very strongly, and it was related to the response to oxygen."

The SNP with the most dramatic change in frequency, from 9 percent in Han Chinese to 87 percent in Tibetans, was associated with lower red blood cell count and lower hemoglobin levels in Tibetans.

That variation occurred near a gene called EPAS1, which earlier studies suggest is involved in regulating hemoglobin in the blood as a response to oxygen levels. The mutation may be in a transcription factor that regulates the activity of EPAS1.

Tibetans carrying only one allele with this mutation had about the same hemoglobin concentration as Han Chinese, but those with two mutated alleles had significantly lower hemoglobin concentration. However, they all have about the same oxygen concentration in the blood.

For some reason, individuals with two copies of the mutation function well in high altitude with relatively low hemoglobin concentration in their blood. The mutation seems to provide an alternative inborn mechanism for dealing with the low oxygen levels, Nielsen said.

Other strongly selected variants were near the genes for the fetal and adult versions of the globin genes, which produce the structural proteins of hemoglobin.

Two other genes showing a dramatic shift in frequency have been linked to anemia, while several other genes have been linked to diseases, including schizophrenia and epilepsy, possibly caused by low oxygen levels in the womb.




Share This Article With Planet Earth
del.icio.usdel.icio.us DiggDigg RedditReddit
YahooMyWebYahooMyWeb GoogleGoogle FacebookFacebook



Related Links
University of California - Berkeley
All About Human Beings and How We Got To Be Here



Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
ABOUT US
A Butterfly Effect In The Brain
London, UK (SPX) Jul 06, 2010
Next time your brain plays tricks on you, you have an excuse: according to new research by UCL scientists published in the journal Nature, the brain is intrinsically unreliable. This may not seem surprising to most of us, but it has puzzled neuroscientists for decades. Given that the brain is the most powerful computing device known, how can it perform so well even though the behaviour of ... read more

.
Get Our Free Newsletters Via Email
  


ABOUT US
Peru declares emergency after mining dam collapse

24 dead in China shuttle bus fire: govt

Years of prison, but no justice for Haiti's women inmates

Reading sessions help Haiti children through quake trauma

ABOUT US
Apple to issue patch for iPhone 4 antenna woes

Apple hit with lawsuit over iPhone 4 antenna woes

New Multi-Year LTA With EADS Astrium To Power All GEO Satellites

Google News revamped to get more personal

ABOUT US
More Fish Than Thought May Thrive In The Ocean's Depths

Oil spills boost arsenic levels in ocean: study

Whiter Clouds Could Mean Wetter Land

Asia in the grip of water crisis: Asian Development Bank

ABOUT US
Arctic Climate May Be More Sensitive To Warming Than Thought

US scientist in race to learn from Indonesia's dying glacier

China sets sail for the Arctic

Answer To What Ended The Last Ice Age May Be Blowing In The Winds

ABOUT US
AgBank prices Hong Kong IPO lower than expected

Salmon In Hot Water

US Approach To Farming Should Change To Meet New Challenges

Mercosur-EU talks at risk after food row

ABOUT US
Romania issues flooding red alert on the Danube

Weakened Alex leaves seven dead in northeast Mexico

Romania flood death toll climbs to 25: official

Romania flood death toll climbs to 24: official

ABOUT US
Religious intolerance threatens Nigerian democracy: Jonathan

Chinese-built hospital risks collapse in Angola: state radio

U.N. pullback likely to worsen Congo wars

Foreign agents in shooting of Rwandan general: S.Africa

ABOUT US
Tibetan Adaptation To Altitude Took Less Than 3,000 Years

A Butterfly Effect In The Brain

China To Hit 1.4 Billion As Medvedev Fears Falling Population In Russia's East

Genetic markers can predict longevity


The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement