Earth Science News  





. UW-Madison Scientists Guide Human Skin Cells To Embryonic State

The scientific team from the University of Wisconsin-Madison created genetic modifications in skin cells (above) to induce the cells into what scientists call a pluripotent state - a condition that is essentially the same as that of embryonic stem cells. Junying Yu, James Thomson and their colleagues introduced a set of four genes into human fibroblasts, skin cells that are easy to obtain and grow in culture. Photo courtesy: Junying Yu
by Staff Writers
Madison WI (SPX) Nov 21, 2007
In a paper to be published Nov. 22 in the online edition of the journal Science, a team of University of Wisconsin-Madison researchers reports the genetic reprogramming of human skin cells to create cells indistinguishable from embryonic stem cells. The finding is not only a critical scientific accomplishment, but potentially remakes the tumultuous political and ethical landscape of stem cell biology as human embryos may no longer be needed to obtain the blank slate stem cells capable of becoming any of the 220 types of cells in the human body.

Perfected, the new technique would bring stem cells within easy reach of many more scientists as they could be easily made in labs of moderate sophistication, and without the ethical and legal constraints that now hamper their use by scientists.

The new study was conducted in the laboratory of UW-Madison biologist James Thomson, the scientist who first coaxed stem cells from human embryos in 1998. It was led by Junying Yu of the Genome Center of Wisconsin and the Wisconsin National Primate Research Center.

"The induced cells do all the things embryonic stem cells do," explains Thomson, a professor of anatomy in the University of Wisconsin School of Medicine and Public Health. "It's going to completely change the field."

In addition to exorcising the ethical and political dimensions of the stem cell debate, the advantage of using reprogrammed skin cells is that any cells developed for therapeutic purposes can be customized to the patient.

"They are probably more clinically relevant than embryonic stem cells," Thomson explains. "Immune rejection should not be a problem using these cells."

An important caveat, Thomson notes, is that more study of the newly-made cells is required to ensure that the "cells do not differ from embryonic stem cells in a clinically significant or unexpected way, so it is hardly time to discontinue embryonic stem cell research."

The successful isolation and culturing of human embryonic stem cells in 1998 sparked a huge amount of scientific and public interest, as stem cells are capable of becoming any of the cells or tissues that make up the human body.

The potential for transplant medicine was immediately recognized, as was their promise as a window to the earliest stages of human development, and for novel drug discovery schemes. The capacity to generate cells that could be used to treat diseases such as Parkinson's, diabetes and spinal cord injuries, among others, garnered much interest by patients and patient advocacy groups.

But embryonic stem cells also sparked significant controversy as embryos were destroyed in the process of obtaining them, and they became a potent national political issue beginning with the 2000 presidential campaign. Since 2001, a national policy has permitted only limited use of some embryonic stem cell lines by scientists receiving public funding.

In the new study, to induce the skin cells to what scientists call a pluripotent state, a condition that is essentially the same as that of embryonic stem cells, Yu, Thomson and their colleagues introduced a set of four genes into human fibroblasts, skin cells that are easy to obtain and grow in culture.

Finding a combination of genes capable of transforming differentiated skin cells to undifferentiated stem cells helps resolve a critical question posed by Dolly, the famous sheep cloned in 1996. Dolly was the result of the nucleus of an adult cell transferred to an oocyte, an unfertilized egg. An unknown combination of factors in the egg caused the adult cell nucleus to be reprogrammed and, when implanted in a surrogate mother, develop into a fully formed animal.

The new study by Yu and Thomson reveal some of those genetic factors. The ability to reprogram human cells through well defined factors would permit the generation of patient-specific stem cell lines without use of the cloning techniques employed by the creators of Dolly.

"These are embryonic stem cell-specific genes which we identified through a combinatorial screen," Thomson says. "Getting rid of the oocyte means that any lab with standard molecular biology can do reprogramming without difficulty to obtain oocytes."

Although Thomson is encouraged that the new cells will speed new cell-based therapies to treat disease, more work is required, he says, to refine the techniques through which the cells were generated to prevent the incorporation of the introduced genes into the genome of the cells. In addition, to ensure their safety for therapy, methods to remove the vectors, the viruses used to ferry the genes into the skin cells, need to be developed.

Using the new reprogramming techniques, the Wisconsin group has developed eight new stem cell lines. As of the writing of the new Science paper, which will appear in the Dec. 21, 2007 print edition of the journal Science, some of the new cell lines have been growing continuously in culture for as long as 22 weeks.

Community
Email This Article
Comment On This Article

Related Links
University of Wisconsin-Madison
All About Human Beings and How We Got To Be Here




Tempur-Pedic Mattress Comparison

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News
How Do We Make Sense Of What We See
Baltimore MD (SPX) Nov 21, 2007
M.C. Escher's ambiguous drawings transfix us: Are those black birds flying against a white sky or white birds soaring out of a black sky? Which side is up on those crazy staircases? Lines in Escher's drawings can seem to be part of either of two different shapes. How does our brain decide which of those shapes to "see?" In a situation where the visual information provided is ambiguous -- whether we are looking at Escher's art or looking at, say, a forest -- how do our brains settle on just one interpretation?

.
Get Our Free Newsletters Via Email
  



  • Tsunami-Recording In The Deep Sea
  • Bangladesh cyclone an 'ecological disaster': experts
  • Mexico fumigates flooded Tabasco to prevent dengue
  • Natural Trees Don't Present Fire Hazard At Holidays

  • Ancient Chinese town on front lines of desertification battle
  • MIT Sees Acceleration In US Greenhouse Emissions
  • Climate change: Political outlook murky despite the science
  • US delegates say dangers of climate change unclear

  • Rosetta: OSIRIS' View Of Earth By Night
  • Strange Space Weather Over Africa
  • KAGUYA Captures The Earth Rising Over The Moon
  • Earth Observation Essential For Geohazard Mitigation

  • New Michigan Tech-Michigan State Biofuels Partnership
  • UK Scientists Lead China Closer To Carbon Capture And Storage
  • Oil prices hit record highs amid dollar weakness
  • Solar Shines As The Greenest Hotel In America Opens In Greensboro

  • UN cuts AIDS infection estimate: report
  • Repellents Between Dusk And Bedtime Make Insecticide-Treated Bednets More Effective
  • Global Fund approves over 1 bln dlrs in new grants to fight disease
  • Bug-Zapper: A Dose Of Radiation May Help Knock Out Malaria

  • Evolutionary Biology Research On Plant Shows Significance Of Maternal Effects
  • Cooling Down Begins At Svalbard Global Seed Vault
  • Dinosaur From Sahara Ate Like A Mesozoic Cow
  • Simple Reason Helps Males Evolve More Quickly

  • Atmospheric Measuring Device For Understanding Smog Formation
  • China pollution costs 5.8 pct of GDP: report
  • Local Sources Major Cause Of US Near-Ground Aerosol Pollution
  • Brazilian CO2 pollution outstripping economic growth: study

  • How Do We Make Sense Of What We See
  • New Antarctica Research Season Kicks Off
  • UW-Madison Scientists Guide Human Skin Cells To Embryonic State
  • Reprogramming The Debate: Stem-Cell Finding Alters Ethical Controversy

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement