Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



WATER WORLD
Underwater mountains help ocean water rise from abyss
by Staff Writers
Boston MA (SPX) Mar 07, 2017


A map of a seamount in the Arctic Ocean created by gathering data with a multibeam echo sounder. Researchers have found that such topographic features can trap deep waters and produce turbulence. Image courtesy of National Oceanic and Atmospheric Administration (NOAA).

At high latitudes, such as near Antarctica and the Arctic Circle, the ocean's surface waters are cooled by frigid temperatures and become so dense that they sink a few thousand meters into the ocean's abyss.

Ocean waters are thought to flow along a sort of conveyor belt that transports them between the surface and the deep in a never-ending loop. However, it remains unclear where the deep waters rise to the surface, as they ultimately must. This information would help researchers estimate how long the ocean may store carbon in its deepest regions before returning it to the surface.

Now scientists from MIT, Woods Hole Oceanographic Institution (WHOI), and the University of Southampton in the U.K. have identified a mechanism by which waters may rise from the ocean's depths to its uppermost layers. Their results are published this week in the journal Nature Communications.

Through numerical modeling and observations in the Southern Ocean, the team found that topographic features such as seamounts, ridges, and continental margins can trap deep waters from migrating to flatter, calmer parts of the ocean. The underwater chasms and cliffs generate turbulent flows, similar to wind that whips between a city's skyscrapers. The longer water is trapped among these topographic features, the more it mixes with upper layers of the ocean, swirling its way back toward the surface.

"In the abyssal ocean, you have 4,000-meter sea mountains and very deep troughs, up and down, and these topographic features help create turbulence," says Raffaele Ferrari, the Cecil and Ida Green Professor of Oceanography in MIT's Department of Earth, Atmospheric and Planetary Sciences. "What seems to be emerging is that water comes back up from the abyss by spending a lot of time in these places where turbulence is really strong."

Knowing there are hotspots where deep waters return to the surface may help scientists identify regions where carbon, once absorbed from the atmosphere and stored deep in the ocean, rises and is released back to the atmosphere.

"The general understanding is that abyssal waters take few to several thousand years to resurface," says lead author and MIT postdoc Ali Mashayek. "If a considerable amount of such upwelling occurs rapidly along sloped boundaries, continental margins, and mid-ocean ridges, then the timescale of recycling of abyssal waters can be shorter."

Ferrari and Mashayek's co-authors are Sophia Merrifield, an MIT graduate student; Jim Ledwell and Lou St. Laurent of WHOI; and Alberto Naveira Garabato of the University of Southampton.

The power of 10 light bulbs

In cold polar regions, the amount of water that continually sinks to the deep ocean is estimated to be "about 107 cubic meters per second - 50 times the transport of the Amazon River," Ferrari says.

In 1966, acclaimed oceanographer Walter Munk addressed the puzzle of how all this deep water returns to the surface, proposing that small-scale ocean turbulence may drive heavy, deep water to mix and rise. This turbulence, he posited, takes the form of breaking internal gravity waves that travel between water layers of different densities, below the ocean's surface.

Munk calculated the mixing power that would have to be generated by breaking internal gravity waves to bring all the ocean's deep water back up to the surface. The number, Ferrari says, is equivalent to "about 10 light bulbs per cubic kilometer of the ocean."

Since then, oceanographers have identified limited areas, such as seamounts and ridges, that create turbulence similar to what Munk theorized.

"But if you summed those few places up, you didn't seem to come up to the number you needed to bring all that water back up," Ferrari says.

Making passage
In February 2009, collaborators from WHOI deployed a tracer in the Southern Ocean, about 1,000 miles west of Drake Passage, as part of a project called DIMES (Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean) to analyze the mixing of ocean waters.

"They released a blob of dye, like a drop of milk in a coffee cup, and let the ocean mix it around," Ferrari says.

Over two years, they sampled the tracer at various stations downstream from where it was released, and found that it experienced very little turbulence, or mixing, in parts of the ocean with few topographic features. However, once the tracer crossed Drake Passage, it encountered seamounts and ridges, and "all of a sudden, it started to spread in the vertical quite fast, at three times the rate predicted by Munk," Ferrari says.

What was driving this accelerated mixing? To find out, the team, led by Mashayek, developed a numerical model to simulate the Southern Ocean region - no small task, as it was unclear whether such a model could have high enough resolution to reproduce a tracer's small-scale movements amid a vast volume of seawater.

"I did some preliminary calculations, back of the envelope estimates, and realized we would have just enough resolution to be able to do it," Mashayek recalls.

A tracer, trapped
The researchers used MIT's general circulation model - a numerical model designed to study the Earth's atmosphere, ocean, and climate - as their framework, and programmed into it all the external forces that are known to exist in the Southern Ocean, including wind patterns, solar heating, evaporation, and precipitation. They then worked measurements from the DIMES experiment into the model and extrapolated the turbulence across the entire ocean region, given the underlying topography.

The team then placed a tracer in its model at the same location where the real tracer was released into the Southern Ocean, and observed that, indeed, it spread vertically, at the same rate that the researchers observed in the field, proving that the model was representing the real ocean's turbulence.

Looking more closely at their simulations, the researchers observed that regions with topography such as seamounts and ridges were essentially trapping the tracer for long periods of time, buffeting and mixing it vertically, before the tracer escaped and drifted through calmer waters.

The researchers believe the turbulence that occurs in these isolated regions over long periods of time may measure up to the total amount of mixing that Munk initially predicted. This mixing process may thus explain how waters in the deep ocean swell back up to the surface.

"Mixing-induced upwelling is globally relevant," Mashayek says. "If our finding in the Southern Ocean extends to other mixing hotspots around the globe, then it will somewhat reshape our understanding of role of turbulent mixing in ocean overturning circulation. It also has important implications for parameterization of mixing processes in climate models."

WATER WORLD
More bang for the buck
Santa Barbara CA (SPX) Mar 03, 2017
Land-based pollutants have been linked to the degradation of several Hawaiian reefs. Take West Maui, for instance, where coral ecosystems are so impacted that reefs and watersheds have been recognized by multiple state and federal programs as in need of special protection. Between 2000 and 2015, coral cover on West Maui's northern reefs has dramatically declined from 30 percent to 10 perce ... read more

Related Links
Massachusetts Institute of Technology
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment on this article using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
War-scarred Syrian children may be 'lost to trauma': aid group

Jihadist tunnels save Assyrian winged bulls of Mosul

U.S. Air Force retires first HC-130 search and rescue aircraft

115 migrants rescued, 25 missing: Libya navy

WATER WORLD
Aireon and Thales Begin Validation of Space-Based ADS-B Data

Space surveillance radar system fully operational

Coffee-ring effect leads to crystallization control

3-D printing with plants

WATER WORLD
Sea of Galilee water level lowest in century: official

Massive Hong Kong shark fin seizure as ban flouted

Syrian farmers fear IS to flood villages near Euphrates

More bang for the buck

WATER WORLD
Is Arctic sea ice doomed to disappear?

NASA study improves forecasts of summer Arctic sea ice

UN reports Antarctica's highest temperatures on record

Air pollution may have masked mid-20th Century sea ice loss

WATER WORLD
Hand-picked specialty crops 'ripe' for precision agriculture techniques

Colombia's 'drug triangle' puts hope in chocolate

Hand-picked specialty crops 'ripe' for precision agriculture techniques

Researchers propose using CRISPR to accelerate plant domestication

WATER WORLD
Southern California fault systems capable of magnitude 7.3 earthquakes

Three killed as cyclone Enawo batters Madagascar

Powerful aftershock hits quake-stricken Philippine city

Zimbabwe seeks aid after floods kill over 240 in 3 months

WATER WORLD
PM hails Ben Guerdane battle as Tunisia 'turning point'

11 Malian soldiers killed in attack on border base

Senegal and Gambia announce new era of ties

Mozambique truce extended by two months

WATER WORLD
Dartmouth study finds modern hunter-gathers relocate to maximize foraging efficiency

100,000-year-old human skulls from east Asia reveal complex mix of trends in time, space

Catalog of 208 human-caused minerals bolsters argument to declare 'Anthropocene Epoch'

Mothers dictate lifelong grooming habits in chimps




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement