Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Earth Science News .




ICE WORLD
Warm Ocean Currents Cause Majority of Ice Loss from Antarctica
by Staff Writers
Washington DC (SPX) May 01, 2012


This animation shows the circulation of ocean currents around the western Antarctic ice shelves. The shelves are indicated by the rainbow color; red is thicker (greater than 550 meters), while blue is thinner (less than 200 meters). Credit: NASA/Goddard CGI Lab.

Warm ocean currents attacking the underside of ice shelves are the dominant cause of recent ice loss from Antarctica, a new study using measurements from NASA's Ice, Cloud, and land Elevation Satellite (ICESat) revealed.

An international team of scientists used a combination of satellite measurements and models to differentiate between the two known causes of melting ice shelves: warm ocean currents thawing the underbelly of the floating extensions of ice sheets and warm air melting them from above. The finding, published in the journal Nature, brings scientists a step closer to providing reliable projections of future sea level rise.

The researchers concluded that 20 of the 54 ice shelves studied are being melted by warm ocean currents. Most of these are in West Antarctica, where inland glaciers flowing down to the coast and feeding into these thinning ice shelves have accelerated, draining more ice into the sea and contributing to sea-level rise. This ocean-driven thinning is responsible for the most widespread and rapid ice losses in West Antarctica, and for the majority of Antarctic ice sheet loss during the study period.

"We can lose an awful lot of ice to the sea without ever having summers warm enough to make the snow on top of the glaciers melt," said the study's lead author Hamish Pritchard of the British Antarctic Survey in Cambridge, United Kingdom. "The oceans can do all the work from below."

To map the changing thickness of almost all the floating ice shelves around Antarctica, the team used a time series of 4.5 million surface height measurements taken by a laser instrument mounted on ICESat from October 2003 to October 2008. They measured how the ice shelf height changed over time and ran computer models to discard changes in ice thickness because of natural snow accumulation and compaction. The researchers also used a tide model that eliminated height changes caused by tides raising and lowering the ice shelves.

"This study demonstrates the power of space-based, laser altimetry for understanding Earth processes," said Tom Wagner, cryosphere program scientist at NASA Headquarters in Washington." Coupled with NASA's portfolio of other ice sheet research using data from our GRACE mission, satellite radars and aircraft, we get a comprehensive view of ice sheet change that improves estimates of sea level rise."

Previous studies used satellite radar data to measure the evolution of ice shelves and glaciers, but laser measurements are more precise in detecting changes in ice shelf thickness through time. This is especially true in coastal areas. Steeper slopes at the grounding line, where floating ice shelves connect with the landmass, cause problems for lower-resolution radar altimeters.

ICESat was the first satellite specifically designed to use laser altimetry to study the Earth's polar regions. It operated from 2003 to 2009. Its successor, ICESat-2, is scheduled for launch in 2016.

"This study demonstrates the urgent need for ICESat-2 to get into space," said Jay Zwally, ICESat project scientist at NASA's Goddard Space Flight Center in Greenbelt, Md. "We have limited information on the changes in polar regions caused by climate change. Nothing can look at these changes like satellite measurements do."

The new research also links the observed increase in melting that occurs on the underside of a glacier or ice shelf, called basal melt, and glacier acceleration with changes in wind patterns.

"Studies have shown Antarctic winds have changed because of changes in climate," Pritchard said. "This has affected the strength and direction of ocean currents. As a result warm water is funnelled beneath the floating ice. These studies and our new results suggest Antarctica's glaciers are responding rapidly to a changing climate."

A different picture is seen on the Antarctic Peninsula, the long stretch of land pointing towards South America. The study found thinning of the largest ice shelf on the peninsula can be explained by warm summer winds directly melting the snow on the ice shelf surfaces. The patterns of widespread ocean-driven melting and summer melting on the Antarctic Peninsula can be attributed to changing wind patterns.

The study was carried out by an international team from the British Antarctic Survey, Utrecht University in Utrecht, Netherlands, the University of California in San Diego and the non-profit research institute Earth and Space Research in Corvallis, Ore.

.


Related Links
ICESat
Beyond the Ice Age






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





ICE WORLD
Warm ocean currents cause majority of ice loss from Antarctica
London, UK (SPX) Apr 30, 2012
Reporting in the journal Nature, an international team of scientists led by British Antarctic Survey (BAS) has established that warm ocean currents are the dominant cause of recent ice loss from Antarctica. New techniques have been used to differentiate, for the first time, between the two known causes of melting ice shelves - warm ocean currents attacking the underside, and warm air melti ... read more


ICE WORLD
EU hands extra 20 mln euros to Pakistan flood victims

S. Korea nuclear safety agency probes two plants

Construction of Chernobyl shelter starts on anniversary

Sean Penn urges more aid for Haiti

ICE WORLD
Australian rare earths miner sues Malaysian opponents

NEMA Welcomes Legislation on Federal Helium Policy

Plan to Counter Space Threats Proposed

US Army Awards Lockheed Martin $391 Million for Counterfire Radar Production

ICE WORLD
Wind pushes plastics deeper into oceans, driving trash estimates up

First evaluation of the Clean Water Act's effects on coastal waters reveals major successes

China raises profile as Tonga rebuilds after riots

Eight species of wild fish have been detected in aquaculture feed

ICE WORLD
Warm Ocean Currents Cause Majority of Ice Loss from Antarctica

Warm ocean currents cause majority of ice loss from Antarctica

Northern Canada feels the heat - Climate change impact on permafrost zones

Study Finds Surprising Arctic Methane Emission Source

ICE WORLD
New study sheds light on debate over organic vs. conventional

New Zealand gas research to help farmers' bottom line

Pesticide exposure linked to brain changes: study

New Yorkers bring fish farms to urban jungle

ICE WORLD
Rapid tsunami warning by means of GPS

Russian volcano spews ash into atmosphere

GPS could speed up tsunami alert systems: researchers

NASA's New Satellite Movie of One Week's Ash Activity from Mexico's Popocatepetl Volcano

ICE WORLD
Zimbabwe PM calls for reforms before election

DR Congo army pursuing rebels after clashes

West African summit on Guinea-Bissau set for Thursday

Sierra Leone's gruesome 10-year civil war

ICE WORLD
'Inhabitants of Madrid' ate elephants' meat and bone marrow 80,000 years ago

Eating more berries may reduce cognitive decline in the elderly

Learning mechanism of the adult brain revealed

New study chronicles the rise of agriculture in Europe




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement