![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Montreal, Canada (SPX) Aug 30, 2018
Deforestation is suspected to have contributed to the mysterious collapse of Mayan civilization more than 1,000 years ago. A new study shows that the forest-clearing also decimated carbon reservoirs in the tropical soils of the Yucatan peninsula region long after ancient cities were abandoned and the forests grew back. The findings, published in the journal Nature Geoscience, underscore how important soils and our treatment of them could be in determining future levels of greenhouse gases in the planet's atmosphere. The Maya began farming around 4,000 years ago, and the spread of agriculture and building of cities eventually led to widespread deforestation and soil erosion, previous research has shown. What's most surprising in the new study is that the soils in the region haven't fully recovered as carbon sinks in over a millennium of reforestation, says McGill University geochemist Peter Douglas, lead author of the new paper.
Ecosystem 'fundamentally changed' Soil is one of the largest storehouses of carbon on Earth, containing at least twice as much carbon as today's atmosphere. Yet scientists have very little understanding of how soil carbon reservoirs change on timescales longer than a decade or so. The new study, along with other recently published research, suggests that these reservoirs can change dramatically on timescales spanning centuries or even millennia. To investigate these long-term effects, Douglas and his co-authors examined sediment cores extracted from the bottom of three lakes in the Maya Lowlands of southern Mexico and Guatemala. The researchers used measurements of radiocarbon, an isotope that decays with time, to determine the age of molecules called plant waxes, which are usually stored in soils for a long time because they become attached to minerals. They then compared the age of wax molecules with that of plant fossils deposited with the sediments. The team - which included scientists from Yale University, ETH Zurich, the University of Florida and the University of Wisconsin-Superior - found that once the ancient Maya began deforesting the landscape, the age difference between the fossils and the plant waxes went from being very large to very small. This implies that carbon was being stored in soils for much shorter periods of time. The project stemmed from research that Douglas had done several years ago as a PhD student at Yale, using plant-wax molecules to trace past climate change affecting the ancient Maya. At the same time, work by other researchers was indicating that these molecules were a good tracer for changes in soil-carbon reservoirs. "Putting these things together, we realized there was an important data-set here relating ancient deforestation to changes in soil carbon reservoirs," Douglas explains.
Protecting old-growth tropical forests "It could also have implications for how we design things like carbon offsets, which often involve reforestation but don't fully account for the long-term storage of carbon." (Carbon offsets enable companies or individuals to offset their greenhouse-gas emissions by purchasing credits from environmental projects, such as tree-planting.) The technique used by the researchers has been developed only recently. In the years ahead, "it would be great to analyze tropical forests in other regions of the world to see if the same patterns emerge - and to see if past human deforestation and agriculture had an impact on soil carbon reservoirs globally," Douglas says. "I'm also very interested in applying this technique to permafrost regions in Canada to see what happened to carbon stored in permafrost during previous periods of climate change."
Research Report: "A long-term decrease in the persistence of soil carbon caused by ancient Maya land use"
![]() ![]() Logging site slash removal may be boon for wild bees in managed forests Corvallis OR (SPX) Aug 23, 2018 New research suggests the removal of timber harvest residue during harvesting may be a boon for wild bees, an important step toward better understanding the planet's top group of pollinators. The findings are important because bees are the driving force behind $100 billion in global economic impact each year, with insect pollinators enhancing the reproduction of 90 percent of the Earth's flowering plants, including many food crops. Insect pollinators are also ecologically critical as promote ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |