![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Oxford UK (SPX) Mar 28, 2018
We have only known about the existence of the unusual yeti crabs (Kiwaidae) - a family of crab-like animals whose hairy claws and bodies are reminiscent of the abominable snowman - since 2005, but already their future survival could be at risk. New Oxford University research suggests that past environmental changes may have profoundly impacted the geographic range and species diversity of this family. The findings indicate that such animals may be more vulnerable to the effects of human resource exploitation and climate change than initially thought. Published in PLoS ONE, the researchers report a comprehensive genetic analysis of the yeti crabs, featuring all known species for the first time and revealing insights about their evolution. All but one of the yeti crab species are found on one of the most extreme habitats on earth, deep-sea hydrothermal vents, which release boiling-hot water into the freezing waters above above them. The research was conducted by ecologists from Oxford's Department of Zoology, Ewha Woman's University in Seoul, South Korea and additional Chinese collaborators. The results reveal that today's yeti crabs are likely descended from a common ancestor that inhabited deep sea hydrothermal vents on mid-ocean ridges in the SE Pacific, some time around 30-40 million years ago. By comparing the location of current yeti crab species with their history of diversification, the authors suggest that the crustaceans likely existed in large regions of mid-ocean ridge in the Eastern Pacific, but have since gone extinct in those areas. While the reasons for this are unclear, the findings point to a specific event, when a shift in deep sea oxygen levels was triggered by climate change and changes to hydrothermal activity at mid-ocean ridges. At the same time yeti crabs appear to have changed the way they disperse their larvae between hydrothermal vents. Christopher Roterman, co-lead author and postdoctoral researcher in of Oxford's Department of Zoology, said: 'Using these genetic techniques, our study provides the first circumstantial case for showing that hydrothermal vent species have gone extinct in large areas. The present-day locations of these animals are not necessarily indicative of their historical distribution. 'The findings have implications for our understanding of how resilient deep-sea hydrothermal vent communities might be to environmental change and the consequences of deep sea mining.' Hydrothermal vents are just a small fraction of the deep sea environment. However, researchers are finding new species continuously and building a better picture of deep ocean life and its potential resources. Overtime these insights should help us to understand whether we can or should responsibly utilise them. Roterman, who was also co-author of a study published last year, highlighting shocking gaps in our knowledge of deep sea environments, added: 'Our understanding of deep sea ecosystems is still very basic and we need to adopt a cautionary approach to exploitation. Before we go bulldozing in, we need to more aware of not only what lives down there, but how resilient their populations are likely to be to human activity. 'Animals like the yeti crabs are potentially vulnerable to resource exploitation in the deep sea and I believe that humans, as a species, have a responsibility to preserve and steward our planet's biodiversity as prudently and ethically as possible.'
Research Report: A new yeti crab phylogeny: Vent origins with indications of regional extinction in the East Pacific
![]() ![]() Coral reef experiment shows: Acidification from carbon dioxide slows growth Washington DC (SPX) Mar 27, 2018 Ocean acidification will severely impair coral reef growth before the end of the century if carbon dioxide emissions continue unchecked, according to new research on Australia's Great Barrier Reef led by Carnegie's Ken Caldeira and the California Academy of Sciences' Rebecca Albright. Their work, published in Nature, represents the first ocean acidification experiment in which seawater was made artificially acidic by the addition of carbon dioxide and then allowed to flow across a natural coral re ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |