Subscribe free to our newsletters via your
. Earth Science News .




ABOUT US
Extinct human cousin gave Tibetans advantage at high elevation
by Staff Writers
Berkeley CA (SPX) Jul 04, 2014


A Chinese researcher collects a blood sample from an ethnic Tibetan man participating in the DNA study. Image courtesy Beijing Genomics Institute (BGI-Shenzhen).

Tibetans were able to adapt to high altitudes thanks to a gene picked up when their ancestors mated with a species of human they helped push to extinction, according to a new report by University of California, Berkeley, scientists.

An unusual variant of a gene involved in regulating the body's production of hemoglobin - the molecule that carries oxygen in the blood - became widespread in Tibetans after they moved onto the high-altitude plateau several thousand years ago. This variant allowed them to survive despite low oxygen levels at elevations of 15,000 feet or more, whereas most people develop thick blood at high altitudes, leading to cardiovascular problems.

"We have very clear evidence that this version of the gene came from Denisovans," a mysterious human relative that went extinct 40,000-50,000 years ago, around the same time as the more well-known Neanderthals, under pressure from modern humans, said principal author Rasmus Nielsen, UC Berkeley professor of integrative biology. "This shows very clearly and directly that humans evolved and adapted to new environments by getting their genes from another species."

This is the first time a gene from another species of human has been shown unequivocally to have helped modern humans adapt to their environment, he said. Nielsen and his colleagues at BGI-Shenzhen in China will report their findings online July 2 in advance of publication in the journal Nature.

The gene, called EPAS1, is activated when oxygen levels in the blood drop, triggering production of more hemoglobin. The gene has been referred to as the superathlete gene because at low elevations, some variants of it help athletes quickly boost hemoglobin and thus the oxygen-carrying capacity of their blood, upping endurance.

At high altitude, however, the common variants of the gene boost hemoglobin and its carrier, red blood cells, too much, increasing the thickness of the blood and leading to hypertension and heart attacks as well as low-birth-weight babies and increased infant mortality. The variant or allele found in Tibetans raises hemoglobin and red blood cell levels only slightly at high elevation, avoiding the side-effects seen in most people who relocate to elevations above 13,000 feet.

"We found part of the EPAS1 gene in Tibetans is almost identical to the gene in Denisovans and very different from all other humans," Nielsen said. "We can do a statistical analysis to show that this must have come from Denisovans. There is no other way of explaining the data."

Harsh conditions on Tibetan plateau
The researchers first reported the prevalence of a high-altitude version of EPAS1 in Tibetans in 2010, based on sequencing of the genomes of numerous Han Chinese and Tibetans. Nielsen and his colleagues argued that this was the result of natural selection to adapt to about 40 percent lower oxygen levels on the Tibetan plateau.

That is, people without the variant died before reproducing at a much higher rate than those with it. About 87 percent of Tibetans now have the high-altitude version, compared to only 9 percent of Han Chinese, who have the same common ancestor as Tibetans.

Nielsen and his colleagues subsequently sequenced the EPAS1 gene in an additional 40 Tibetans and 40 Han Chinese. The data revealed that the high-altitude variant of EPAS1 is so unusual that it could only have come from Denisovans. Aside from its low frequency in Han Chinese, it occurs in no other known humans, not even Melanesians, whose genomes are nearly 5 percent Denisovan. A high quality sequence of the Denisovan genome was published in 2012.

Nielsen sketched out a possible scenario leading to this result: modern humans coming out of Africa interbred with Denisovan populations in Eurasia as they passed through that area into China, and their descendants still retain a small percentage - perhaps 0.1 percent - Denisovan DNA. The group that invaded China eventually split, with one population moving into Tibet and the other, now known as Han Chinese, dominating the lower elevations.

He and his colleagues are analyzing other genomes to pin down the time of Denisovan interbreeding, which probably happened over a rather short period of time.

"There might be many other species from which we also got DNA, but we don't know because we don't have the genomes," Nielsen said. "The only reason we can say that this bit of DNA is Denisovan is because of this lucky accident of sequencing DNA from a little bone found in a cave in Siberia. We found the Denisovan species at the DNA level, but how many other species are out there that we haven't sequenced?"

.


Related Links
University of California - Berkeley
All About Human Beings and How We Got To Be Here






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








ABOUT US
In human evolution, changes in skin's barrier set Northern Europeans apart
San Francisco CA (SPX) Jul 03, 2014
The popular idea that Northern Europeans developed light skin to absorb more UV light so they could make more vitamin D - vital for healthy bones and immune function - is questioned by UC San Francisco researchers in a new study published online in the journal Evolutionary Biology. Ramping up the skin's capacity to capture UV light to make vitamin D is indeed important, according to a team ... read more


ABOUT US
Haiti PM to donors: please honor aid pledges

Accidents raise safety questions on Hong Kong waters

Malaysia to deploy more equipment in MH370 search

AW139 helicopters to perform emergency medical missions

ABOUT US
Nine killed in landslide at Indonesian gold mine

ELASTx Stretches Potential for Future Communications Technologies

Does 3D printing have the right stuff?

Ghost writing the whip

ABOUT US
Zone tropical coastal oceans; manage them more like land resources

Dramatic decline of Caribbean corals can be reversed

Rethinking the Reef

Lessons from the West: Great Barrier Reef in danger

ABOUT US
Changing Antarctic winds create new sea level threat

Ancient ocean currents may have changed pace and intensity of ice ages

One-well program in arctic waters starts for Gazprom division

Study links Greenland ice sheet collapse, sea level rise 400,000 years ago

ABOUT US
Why does Europe hate GM food and is it about to change its mind?

Payback time for soil carbon from pasture conversion to sugarcane production

Internet crowd bites big into potato salad project

The long, slow march of 'biofortified' GM food

ABOUT US
At least two dead as quake hits Mexico, Guatemala

Rewriting the history of volcanic forcing during the past 2,000 years

Japan issues highest alert over super typhoon Neoguri

Weakened Tropical Storm Arthur heads to Canada

ABOUT US
Somali capital one step short of famine: UN

Clash between army, 'tribal gunmen' leaves 65 dead in Uganda

Clashes between Nigeria army, Islamists kill 59: official

UN determined to help Africa fight terrorism: Ban

ABOUT US
Researchers say hormonal mechanism responsible for left-handedness

Adaptations of Tibetans may have benefited from extinct denisovans

Extinct human cousin gave Tibetans advantage at high elevation

Insect diet helped early humans build bigger brains




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.