![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Montreal, Canada (SPX) Sep 15, 2017
Forest fires and wildland fires are common in summer in the temperate boreal forest, rarer at high altitudes, and unheard of in an ice age at high altitudes - until now. Evidence of wildfires dating back 20,000 years was recently discovered in the Massif du Queyras, in the heart of the French Alps, 2,240 metres above sea level. The news comes in a joint Canada-France study published in New Phytologist and co-authored by Olivier Blarquez, a geography professor at Universite de Montreal, and Christopher Carcaillet, a professor at the Ecole Pratique des Hautes Etudes, in Paris, and at the Laboratoire d'ecologie des hydrosystemes naturels et anthropises (CNRS/Universite Lyon 1/ENTPE). "This discovery is not trivial," said Blarquez. "It echoes the recent wildfires in the Arctic tundra, where [the presence of] trees have become increasingly common. The situation has drawn the attention of the scientific community because of its significant impact on the [Earth's] carbon cycle. Changes in high mountain forest cover due to global warming, and especially the abandonment of agricultural land, risk exacerbating the spread of wildfires in the coming years." In their study, Blarquez and Carcaillet reconstruct wildland fire frequency and forest composition over the past 20,000 years, including the Last Glacial Maximum, when ice sheets were at their greatest extension. The researchers' findings suggest there was a tree glacial refugium during this period, when wildfires were able to break out. The authors also consider the complex long-term interactions between fires, vegetation and climate. "Wildfires spread when fuel is available and the climate is dry," said Carcaillet, who is also co-director of the Laboratoire international associe franco-canadien MONTABOR. "It is therefore counterintuitive to imagine wildland fires in periglacial, subpolar or mountain areas. And yet [the discovery of] high mountain lacustrine sediments revealed just that. Wildfires were indeed rare, but the presence of wood charcoal confirmed that they did occur, even during glacial and postglacial periods." High mountain wildfires: Swiss stone pines, larches among the causes Wildfires occurred in the Massif du Queyras, situated between France and Italy, because the trees survived the ice age. Evidence of their existence has been found in macro-remains such as leaves and seeds. However, a second area located further north, in the Massif de la Vanoise (Auvergne-Rhone-Alpes) where sediment accumulated during the Last Glacial Maximum, shows no trace of vegetation. No evidence of wildfires was found in this area, because without vegetation to burn, fire couldn't spread. In the Queyras, Swiss stone pines and larches formed an isolated tree glacial refugium, "like an island in the middle of an ocean of ice," according to the study. Protected during the Last Glacial Maximum, these trees could be the genetic ancestors of the Swiss stone pines and larches that still grow in the valleys of the Western Alps. As the dominant forest cover changed, fires began to happen. In the early Holocene Epoch (about 10,700 years ago), the climate became warmer and more humid; the Swiss stone pine, dominant in areas with low fire frequencies during the ice age (when the climate was cold and dry), was replaced by the larch, which coincided with increased fire frequencies. "This study demonstrates that a periglacial climate does not preclude wildfires," said Carcaillet. "Trees - in this case, Swiss stone pines - are necessary for fires to burn in high mountains. The climate affects the frequency of fires, and in return, fires affect tree diversity."
Research Report: "Fire ecology of a tree glacial refugium on a nunatak with a view on Alpine glaciers"
![]() Washington (UPI) Sep 7, 2017 Researchers have discovered a new species and genus of tree hiding in plain sight in Peru's tropical Andes. Every year, the forests of South America yield new species. Just this month, a new study detailed the discovery of 381 new species in the Amazonian forests of Brazil. Most new species, however, are relatively small in stature, living in caves, small streams or especially de ... read more Related Links University of Montreal Forestry News - Global and Local News, Science and Application
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |