. Earth Science News .
SHAKE AND BLOW
Lab earthquakes show how grains at fault boundaries lead to major quakes
by Staff Writers
Pasadena CA (SPX) Jun 13, 2022

A three-dimensional visualization shows how rock gouge can arrest a rupture (in red) but, with a combination of dynamic stressing and dynamic weakening, will ultimately re-nucleate the rupture shortly thereafter (in blue).

By simulating earthquakes in a lab, Caltech engineers have provided strong experimental support for a form of earthquake propagation now thought responsible for the magnitude-9.0 earthquake that devastated the coast of Japan in 2011.

Along some fault lines, which are the boundaries of tectonic plates, a fine-grained gravel is formed as the plates grind against one another. The influence of this gravel on earthquakes has long been the subject of scientific speculation.

In a new paper appearing in the journal Nature on June 1, the Caltech researchers show that the fine gravel, known as rock gouge, first halts earthquake propagation, but then triggers the rebirth of earthquakes to generate powerful ruptures.

"Our novel experimental approach has enabled us to look into the earthquake process up close, and to uncover key features of rupture propagation and friction evolution in rock gouge," says Vito Rubino, research scientist and lead author of the Nature paper.

"One of the main findings of our study is that fault sections previously thought to act as barriers against dynamic rupture may in fact host earthquakes, as a result of the activation of co-seismic friction weakening mechanisms."

In the paper, Rubino and his co-authors Nadia Lapusta, the Lawrence A. Hanson, Jr., Professor of Mechanical Engineering and Geophysics, and Ares Rosakis, Theodore von Karman Professor of Aeronautics and Mechanical Engineering, show that so-called "stable" or "creeping" faults are not actually immune to major ruptures after all, as previously suspected.

Such faults occur when tectonic plates slide past one another slowly, without generating big quakes (for example, the currently creeping section of the San Andreas Fault in central California).

Instead, rock gouge has a complex behavior. It first acts as a barrier to the rupture, absorbing energy and blocking its progress. But, when the plates slide past each other with high enough velocity, the rock gouge interface weakens and dramatically reduces friction between the two plates, causing the re-emergence of the quake. This process is known as "renucleation."

"Based on the previous rich body of rock-friction experiments, we know that rock gouge can either strengthen with fault slip and act as a barrier, or weaken and promote earthquake rupture," Lapusta says.

"However, these behaviors are typically considered to be separated in space, with weakening and strengthening occurring on different fault locations. Our experiments show how these behaviors can combine on the same fault locations during the same slip event, over the timescales of dynamic rupture, leading to intermittent slip and potentially turning a fault barrier into an earthquake-prone region."

The Nature study explores the role and reaction of rock gouge, a micrometer-sized granular material, to seismic activity. To simulate the effect of rock gouge on an earthquake's propagation, the team used Caltech's so-called seismological wind tunnel, founded by Rosakis and former Caltech Seismological Laboratory director Hiroo Kanamori, John E. and Hazel S. Smits Professor of Geophysics, Emeritus. The facility, in existence since 1999, allows engineers and scientists to study major earthquakes on a miniature scale.

To simulate an earthquake, the team first cut in half a transparent meter-sized block of a type of plastic known as Homalite. The bulk properties of Homalite enable dynamic rupture nucleation within samples as small as tens of centimeters in diameter; studying these effects in rock would require samples that are tens of meters in size.

The researchers then placed the two halves of the Homalite together under high pressure and shear (a situation in which the two halves want to slide against one another in opposite directions), simulating tectonic pressure that slowly builds up along a fault line. Between the pieces, fine-grained quartz powder was embedded as a stand-in for fault gouge.

Next, the team put a small wire fuse between the two halves; its location was the "epicenter" of the earthquake they planned to simulate. As the simulated quake progressed, high-speed imaging technology was used to record its evolution, one millionth of a second at a time.

"Back in the late 1990s, when we were designing the 'seismological wind tunnel,' we could never have imagined its success in discovering such a rich spectrum of physical phenomena relating to frictional earthquake source processes and that such phenomena could rigorously be scaled to explain natural earthquake behavior occurring at massively different length scale around the globe," Rosakis says. "This is a testament of the tremendous power of the discipline of mechanics."

Next, the team plans to study the effects of fluids, which are naturally present in Earth's crust, on the frictional behavior of rock gouge.

Research Report:"Intermittent lab earthquakes in dynamically weakening fault gouge."


Related Links
California Institute of Technology
Bringing Order To A World Of Disasters
When the Earth Quakes
A world of storm and tempest


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


SHAKE AND BLOW
Four killed, 14 injured as quakes hit southwest China
Beijing (AFP) June 1, 2022
At least four people are dead and 14 others injured after two earthquakes hit southwestern China on Wednesday, state media reported. A shallow 6.1-magnitude quake hit a sparsely populated area in Sichuan province about 100 kilometres (60 miles) west of provincial capital Chengdu, broadcaster CCTV said. It was followed three minutes later by a second quake of magnitude 4.5 in a nearby county where the deaths and injuries occurred, according to CCTV. Footage obtained by the broadcaster showed ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

SHAKE AND BLOW
Iraqi migrant in UK fears Rwanda deportation, despite reprieve

One dead in Shanghai chemical plant explosion

Sri Lankan navy stops Australia-bound migrant boat

As climate impacts grow, so do calls for 'loss and damage' funds

SHAKE AND BLOW
Recovering rare-earth elements from e-waste

UCLA engineers create single-step, all-in-one 3D printing method to make robotic materials

Time to rebuild construction

Moon sculptures, NFTs at futuristic Art Basel fair

SHAKE AND BLOW
Italy's Po Valley rations water amid record drought

WTO fishing deal hailed as historic though 'not perfect'

Hong Kong floating restaurant sinks in South China Sea

Dead rivers: The cost of Bangladesh's garment-driven economic boom

SHAKE AND BLOW
Melting accelerates for thousands of Greenland's northern glaciers

Scientists find new population of polar bears in sea-ice free region

Canada, Denmark settle friendly 'war' over Arctic island

Melting Arctic ice could transform international shipping routes

SHAKE AND BLOW
Olive trees were first domesticated 7,000 years ago

South Africa's latest hot export to China? Donkeys

Saving paradise: Why we must protect global lands now

How coffee is saving a unique Mozambican forest

SHAKE AND BLOW
Strong quake hits eastern Taiwan: USGS

26 more dead in India monsoon fury, waters recede in Bangladesh

Hundreds of thousands evacuated in China after heaviest rains in decades

Dozens rescued by helicopter in Yellowstone floods

SHAKE AND BLOW
Kenya president urges deployment of regional force in DR Congo

Burkina army says killed over 120 'terrorists'

Tanzania charges Maasai with murder over policeman death

Zambia arrests Chinese man wanted for racism in Malawi

SHAKE AND BLOW
Healthy human brains are hotter than previously thought, exceeding 40 degrees

Are we born with a moral compass

Amazon's indigenous leaders make plea at Americas summit

China's population set to shrink for first time since the great famine









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.