![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Mar 29, 2018
Based on an extensive collection of lunar and terrestrial samples, a new study probing the elusive origins of the Moon - now typically thought to have formed from a collision between a proto-Earth and a solid impactor - supports theories of a collision with extremely high energy. So high, in fact, that it resulted in nearly complete mixing of materials between the impactor and proto-Earth. Critically, the study further suggests that most of Earth's water was delivered before the Moon-forming impact, and not later, as often proposed. A collision between two large planetary objects with unique isotopic compositions is thought to have created the Earth-Moon system. However, explaining why the Earth and Moon don't then themselves have unique isotopic characteristics, as most planets in the Solar System do, has been challenging. To resolve this, some have proposed a high-energy collision model in which isotopes between the two were nearly equally mixed upon impact; any differences, then, may have resulted from subsequent impacts to the rocky planets, later in time. To better understand the likelihood of such a scenario in the Earth-Moon system's origin, Richard C. Greenwood and colleagues analyzed the oxygen isotopic compositions of a large set of lunar and terrestrial samples. Their analysis showed a 3- to 4-ppm (parts per million) difference between the oxygen isotopic concentrations of the lunar rocks and the terrestrial basalts, but no significant difference between the lunar samples and terrestrial olivine, a common mineral in Earth's subsurface. According to the authors, these findings are consistent with high-energy impact simulations that suggest near-complete mixing. Greenwood and colleagues suggest that the 3- to 4-ppm difference they did uncover can be explained by a "late veneer," or input of stony meteorite material to Earth in an impact event subsequent to the Moon-forming impact. Their results further imply, say the authors, that a large portion of the Earth's water was present earlier than the giant impact event that formed the Moon. In fact, no more than 5-30% of water was contributed to Earth from the late veneer process, Greenwood et al. say. The retention of Earth's ocean, despite a high-energy impact, can potentially have implications for exoplanet habitability more broadly.
![]() ![]() Artificial bio-inspired membranes for water filtration Paris, France (SPX) Mar 27, 2018 From a desire to develop breakthrough technologies for water filtration and purification, researchers have developed membranes with artificial channels inspired by the proteins that form the pores in biological membranes: aquaporins. Using an innovative spectroscopic technique, they have been able to observe that, in the very restricted space in these channels, water molecules organize in a very regular manner, in an oriented molecular wire structure : the water has become "chiral." Identify ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |