![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Singapore (SPX) Feb 12, 2019
A field survey conducted by a team of marine scientists from the National University of Singapore (NUS) has uncovered toxic bacteria living on the surfaces of microplastics, which are pieces of plastic smaller than 5 millimetres in size, collected from the coastal areas of Singapore. These bacteria are capable of causing coral bleaching, and triggering wound infections in humans. The NUS team also discovered a diversity of bacteria, including useful organisms - such as those that can degrade marine pollutants like hydrocarbons - in the plastic waste. Dr Sandric Leong, research lead and Senior Research Fellow at the NUS Tropical Marine Science Institute (TMSI), said, "Microplastics form a large proportion of plastic pollution in marine environments. "Marine organisms may consume bits of microplastics unintentionally, and this could lead to the accumulation and subsequent transfer of marine pathogens in the food chain. Hence, understanding the distribution of microplastics and identifying the organisms attached to them are crucial steps in managing the plastic pollution on a national and global scale." This study is the first to examine the bacterial community on microplastics found in tropical coastal regions. The results were first published in the journal Science of the Total Environment on 17 November 2018.
Small plastics, big problem Compared to microplastics on land, microplastics in aquatic ecosystems take a much longer time to degrade due to the presence of salt and a lower temperature in the ocean. As a result, they present a habitable environment for marine biota to colonise. Yet, despite their prevalence, the distribution of microplastics along the coasts of tropical regions is not well studied. Dr Leong and Ms Emily Curren, a PhD student from TMSI and the Department of Biological Sciences at the NUS Faculty of Science, embarked on a six-month study to examine the bacterial communities on microplastics collected from coastal regions of Singapore.
Diverse bacterial communities living on microplastics Species of the bacteria Erythrobacter, which is capable of degrading plastic, and bacteria species Pseudomonas veronii, which have been used to clean up oil spills, were found. "Given the predicted increase in plastic waste contamination in oceans, the discovery of such bacteria provides important nature-friendly alternatives for the mitigation of plastic pollution and toxic pollutants such as hydrocarbons," said Ms Curren. In contrast, the bacteria Photobacterium rosenbergii, often associated with coral bleaching and disease, was also identified. The proliferation and accumulation of this bacterium could be detrimental to the coral reefs in Singapore as the southern strait is characterised by multiple coral communities with great biodiversity that are under conservation. The research team also uncovered species of marine Vibrio, a major cause of wound infections in humans, and species of Arcobacter, known to cause gastroenteritis in humans. "As the microplastics we studied were collected from locations easily accessible to the public and in areas widely used for recreation, the identification of potentially pathogenic bacteria would be important in preventing the spread of diseases," elaborated Ms Curren.
Future studies to identify bacteria sources This will allow the identification of non-native species that threaten the existing biodiversity, and provide insights on managing the urgent issue of marine plastic pollution.
![]() ![]() Hungary court jails company officials over 2010 toxic spill Gyor, Hungary (AFP) Feb 4, 2019 A Hungarian court on Monday sentenced company officials to up to 2.5 years in prison for one of the country's worst environmental disasters that killed 10 people and blighted rivers with toxic waste. More than 200 others were injured in October 2010 when a holding reservoir of the MAL alumina plant in the western town of Ajka burst open, sending 1.1 million cubic metres (38.8 million cubic feet) of red sludge into nearby villages and countryside. The mud - a caustic byproduct from the aluminium ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |