. Earth Science News .
New Microsensor Measures Volatile Organic Compounds In Water And Air On-Site

Photograph of the microsensor chip with four disk-type microresonators in the center. The size of the chip is 3.5 millimeters by 3.5 millimeters. Credit: Gary Meek
by Staff Writers
Atlanta GA (SPX) Sep 20, 2007
Researchers at the Georgia Institute of Technology have developed a miniature sensor that uses polymer membranes deposited on a tiny silicon disk to measure pollutants present in aqueous or gaseous environments. An array of these sensors with different surface coatings could be used during field-testing to rapidly detect many different chemicals.

Since this new sensor allows water and air samples to be analyzed in the field, it is an improvement over classical techniques that require samples be carried back to the laboratory for analysis. This research, funded by the National Science Foundation, was presented on August 20 at the American Chemical Society's 234th National Meeting.

The heart of the disk-shaped sensor is a microbalance that measures the mass of pollutant molecules.

"When pollutant chemicals get adsorbed to the surface of the sensor, a frequency change of the vibrating microbalance provides a measure of the associated mass change," said Oliver Brand, associate professor in Georgia Tech's School of Electrical and Computer Engineering.

Cantilever-type balances, which move up and down like a diving board, are common when measuring the amount of a chemical in the gas phase. However, the mechanical vibrations of the balance used to detect the mass changes are damped in liquids, causing the sensitivity of the balance to decrease. Thus, Brand and graduate students Jae Hyeong Seo, Stuart Truax and Kemal Safak Demirci searched for structures whose vibrations were less affected by the surrounding medium. The researchers chose a silicon disk platform for the sensor. The disk shears back and forth around its center with a characteristic resonance frequency between 300 and 1,000 kHz, depending on its geometry. With proper actuation and sensing elements integrated onto the microstructures, Brand can electrically excite the resonator and sense these rotational oscillations.

Since each sensor has a diameter of approximately 200-300 microns, or the average diameter of a human hair, an array of a dozen sensors is only a few millimeters in size.

To determine how to selectively detect multiple pollutants in the same sample, Brand began collaborating with Boris Mizaikoff, an associate professor in Georgia Tech's School of Chemistry and Biochemistry and director of its Applied Sensors Laboratory.

Mizaikoff and graduate students Gary Dobbs and Yuliya Luzinova selected commercially available hydrophobic polymers and deposited them as thin film membranes on the sensor surface. They continue to investigate innovative ways to consistently deposit the polymers at the disk surface, while ensuring sufficient adhesion for long-term field applications.

"By modifying the silicon transducer surface with different polymer membranes, each sensor becomes selective for groups of chemicals," explained Mizaikoff.

An array of these sensors, each sensor with a different chemically modified transducer surface, can sense different pollutants in a variety of environments ranging from industrial to environmental and biomedical monitoring applications.

Brand and Mizaikoff aim to detect volatile organic compounds (VOCs) in aqueous and gaseous environments. VOCs are pollutants of high prevalence in the air and surface and ground waters. They are emitted from products such as paints, cleaning supplies, pesticides, building materials and furnishings, office equipment and craft materials.

A common VOC is benzene, with a maximum contaminant level set by the Environmental Protection Agency (EPA) at five micrograms per liter in drinking water. Many VOCs are present at similar very low concentrations, so effective sensors must accurately measure and discriminate very small mass changes.

"We've been able to measure concentrations among the lowest levels that have been achieved using this type of resonant microsensor," noted Brand. "While we have not achieved the required sensitivity yet, we are constantly making improvements."

Brand and Mizaikoff have tested their sensor device in the laboratory by pumping water with specific pollutant concentrations through a simple flow cell device attached to the sensor.

A typical test begins by flowing a water sample containing a known amount of pollutant over a sensor coated with a polymer membrane. When the sample flows through the cell, the mass of the microstructure increases, causing its characteristic vibration frequency, or resonance frequency, to decrease. By monitoring this resonance frequency over time, Brand and Mizaikoff can detect the amount of aromatic hydrocarbons such as benzene present in water.

The researchers plan to run field trials to investigate the use of this new microsensor in aqueous and gaseous environments for rapid on-site screening of multiple pollutants.

"With benzene and other VOCs high on the EPA priority pollutant list, it would be a major advantage to get a rapid reading of VOC concentrations directly in the field," said Mizaikoff.

Community
Email This Article
Comment On This Article

Related Links
Georgia Institute of Technology Research News
Our Polluted World and Cleaning It Up



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Pollution Causes 40 Percent Of Deaths Worldwide
Ithaca, NY (SPX) Sep 21, 2007
About 40 percent of deaths worldwide are caused by water, air and soil pollution, concludes a Cornell researcher. Such environmental degradation, coupled with the growth in world population, are major causes behind the rapid increase in human diseases, which the World Health Organization has recently reported. Both factors contribute to the malnourishment and disease susceptibility of 3.7 billion people, he says.







  • Malaysia's Smart Satellite Teleport Plays Role In Tsunami Warning
  • When The Levees Fail
  • Japan holds disaster drills to prepare for big quake
  • NKorea searches for fugitives after floods: aid group

  • Increase In Atmospheric Moisture Tied To Human Activities
  • Climate change tops future humanitarian challenges: Annan
  • Climate talks in Montreal to take dual aim
  • Climate change and desertification two sides of same coin

  • Boeing Launches WorldView-1 Earth-Imaging Satellite
  • New Faraway Sensors Warn Of Emerging Hurricane's Strength
  • Key Sensor For Northrop Grumman NPOESS Program Passes Critical Structural Test
  • Air France And ESA Join To Offer Passengers Unique View Of Voyage

  • Cellulose-Munching Microbe At Heart Of New Bioethanol Company
  • On climate change, US vies to come in from the cold
  • Analysis: Oil pollution in the Caspian
  • Analysis: Angolan oil piques interest

  • China confirms bird flu outbreak: HK official
  • Northern Iraq battles cholera 'epidemic'
  • Expert says climate change will spread global disease
  • Researchers Discover New Strategies For Antibiotic Resistance

  • UT Researcher Sheds New Light On Hybrid Animals
  • DNA barcoding: from fruit-flies to puffer fish
  • Hungry bears plague US west after record drought
  • Auto Immune Response Creates Barrier To Fertility; Could Be A Step In Speciation

  • Helping The Carbon Nanotube Industry Avoid Mega-Mistakes Of The Past
  • Pollution Causes 40 Percent Of Deaths Worldwide
  • New Microsensor Measures Volatile Organic Compounds In Water And Air On-Site
  • International Team Shows Mercury Concentrations In Fish Respond Quickly To Increased Deposition

  • Methodology Predicts Effects Of Hurricanes On Coastal Roadways
  • Change From Arid To Wet Climate In Africa Had Significant Effect On Early Human Evolution
  • Toddler And Ape Study Reveals Higher Social Skills Are Distinctly Human
  • Primates Expect Others To Act Rationally

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2007 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement