![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Kaust, Saudi Arabia (SPX) Aug 22, 2018
Scientists have discovered the first molecular evidence that when exposed to environmental stress corals and anemones can optimize their gene expression enabling them to acclimatize to extreme conditions such as those experienced during climate change. "In a nutshell, we could train toughened corals in nurseries to improve their thermal resilience, helping them to better cope with rising sea temperatures before out planting them in the reefs." Says Dr. Manuel Aranda lead author and Assistant Professor of Marine Science in the Red Sea Research Center at King Abdullah's University of Science and Technology (KAUST). "Genetic adaptation is a slow process because it requires beneficial mutations to spread through the population, which takes quite some time in organisms like corals with long generation times. Our findings are important because epigenetic mechanisms present a potentially fast way to increase the survivability of corals in light of the current speed at which climate change progresses." Dr. Aranda continues. This research could have a huge potential impact on the conservation of economically valuable reef formations upon which countless marine organisms rely for habitat. By studying how tiny sea anemones use epigenetic mechanisms to regulate the expression of genes involved in their symbiosis with photosynthetic algae, researchers have found these mechanisms may help corals and anemones acclimatize to environmental stress and believe this could be harnessed to improve their resilience to the challenges posed by climate change. The team based in KAUST's Biological and Environmental Sciences and Engineering Division sequenced anemone genomes using a technique which detects DNA methylation - a chemical tag attached to DNA that affects gene expression without altering the genetic sequence. They found that nearly 40% of anemone genes were methylated and that the methylation level of a gene correlated with its expression level. Their findings are published in the Journal Science Advances. By comparing sequences from anemones with and without symbiotic algae, the team identified roughly 2,000 genes that had different methylation patterns in response to the symbiosis, many of which were involved in the establishment, maintenance, and breakdown of symbiosis, including genes involved in recognition, engulfment of symbionts, and nutrient exchange. "The next step is to look at DNA methylation changes involved in acclimation to temperature stress and to check if these changes are passed on to the offspring. If this is the case, we could use the process of environmental hardening to "train" the parents and produce pre-acclimated larvae that could be used to seed reefs." Dr. Aranda says. The team plans to investigate how DNA methylation changes in response to temperature stress and whether these epigenetic changes are inherited. They also plan to design long-term experiments to determine how long the acclimation lasts.
![]() ![]() Climate change multiplies harmful marine heatwaves Paris (AFP) Aug 15, 2018 The number of days marked by potentially destructive ocean heatwaves has doubled in 35 years, and will multiply another five-fold at current rates of climate change, scientists warned Wednesday. Even if humanity does manage to cap global warming "well below" two degrees Celsius (3.6 degrees Fahrenheit), as called for in the Paris climate treaty, marine heatwaves will sharply increase in frequency, intensity and duration, they reported in the journal Nature. Compared to hot spells over land, whic ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |