. Earth Science News .
WATER WORLD
New study in oxygen-deprived black sea provides insights on future carbon budget
by Staff Writers
Miami FL (SPX) Apr 12, 2018

This is the Black Sea, captured on May 29, 2017 from NASA's Aqua satellite using the Moderate Resolution Imaging Spectroradiometer (MODIS).

Scientists are studying the oxygen-deprived waters of the Black Sea to help answer questions about the deepest parts of the ocean and Earth's climate.

A new study led by researchers at the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science found that even in the absence of oxygen, the chemical and biological processes occurring in the Black Sea resemble those in the oxygenated deep ocean. These results provide new insights into the role that the deep ocean plays as a storage reservoir for carbon, a process that helps to dampen the effects of human-driven climate change.

"Understanding such processes is especially important today since oxygen in the ocean is decreasing, largely due to the warming of ocean waters driven by climate change," said the study's lead author Andrew Margolin, a postdoctoral researcher at the College of William and Mary's Virginia Institute of Marine Science and an alumnus of the UM Rosenstiel School.

Even in the absence of oxygen, the research team found that the respiration of organic carbon occurring in the anoxic waters of the Black Sea is not as different from that occurring in the deep ocean.

One hypothesis has been that decreased oxygen in the deep ocean may weaken respiration of organic carbon to CO2, causing organic carbon to accumulate there. The accumulation of organic carbon in the deep ocean would limit the release of carbon into the atmosphere as CO2, limiting further warming by this greenhouse gas.

Understanding the exchange of carbon between the ocean and atmosphere is vital to understanding global climate and its past, present and future variability.

The oceans have absorbed approximately one third of human-produced CO2 emissions, dampening the effects of carbon dioxide-driven greenhouse warming. One of the pathways for the ocean to naturally sequester carbon from the atmosphere is by storing it in the deep ocean as organic carbon for hundreds - if not thousands - of years.

Researchers analyzed seawater samples collected from the Black Sea aboard the research vessel Pelagia as part of the international GEOTRACES study. Samples were taken from the sea surface to the seafloor at a depth of 2,200 meters (1.4 miles), frozen and then shipped to the Biophysics Institute in Pisa, Italy where Margolin conducted the analyses.

The Black Sea, bordered by Ukraine to its north and Turkey to its south, is the largest anoxic sea on Earth, making it an ideal natural laboratory for marine geochemists to study the processes of carbon transformations in the absence of oxygen.

"Insights into oceanic carbon transformations - including the oxygen dependence of organic carbon respiration - can be gained by studying the anoxic Black Sea," said Margolin.

Research Report: "Black Sea dissolved organic matter dynamics: Insights from optical analyses"


Related Links
University of Miami Rosenstiel School of Marine and Atmospheric Science
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


WATER WORLD
KAIST discloses the formation of burning ice in oceanic clay rich sediment
Seoul, South Korea (SPX) Apr 10, 2018
A KAIST research team has identified the formation of natural gas hydrates, so-called flammable ice, formed in oceans. Professor Tae-Hyuk Kwon from the Department of Civil and Environmental Engineering and his team found that clay minerals in oceanic clay-rich sedimentary deposits promote formation of gas hydrates and proposed the principle of gas hydrate formation in the clayey sedimentary layers. Gas hydrates are ice-like crystalline structures composed of hydrogen-bonded water molecules e ... read more

Comment using your Disqus, Facebook, Google or Twitter login.



Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
7 Myanmar soldiers sentenced to 10 years over Rohingya killings: army

What plants can teach us about oil spill clean-up, microfluidics

Arizona deploys first 225 National Guard members to Mexico border

Trump to send thousands of troops to border as Mexico spat heats up

WATER WORLD
Thin engineered material perfectly redirects and reflects sound

Programming: a highly sought talent in Silicon Valley

A UC3M study analyzes the keys to fragmentation of metallic materials

New 4-D printer could reshape the world we live in

WATER WORLD
Marine researchers say recent sea star wasting disease epidemic defies prediction

Research suggests water appeared while Earth was still growing

KAIST discloses the formation of burning ice in oceanic clay rich sediment

New study shows vegetation controls the future of the water cycle

WATER WORLD
Melting of Arctic mountain glaciers unprecedented in the past 400 years

Antarctica has experienced increased snowfall over the last 200 years

New technique more accurately reflects ponds on Arctic sea ice

NASA Scientist Collects Bits of the Solar System from an Antarctic Glacier

WATER WORLD
Fixing soybean's need for nitrogen

Hybrid swarm in global mega-pest

In Cambodia, fears tarantula may go off the menu

Bats to blame for pig-killer virus in China: study

WATER WORLD
'Footquakes': Messi really does make the Earth tremble

Great magma eruptions had 2 sources

Shaking up megathrust earthquakes with slow slip and fluid drainage

Hundreds take shelter as Fiji braces for another cyclone

WATER WORLD
Five park rangers, driver killed in DR Congo's Virunga wildlife sanctuary

UN troops attacked in C.African capital after security sweep

Benin, Niger back Chinese involvement in mega rail project

Mali prisoner killings decried as 'summary executions'

WATER WORLD
Why expressive brows might have mattered in human evolution

First human migration out of Africa much more geographically widespread

Bonobos share and share alike

Inner ear provides clues to human dispersal









The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us.