![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Groningen, The Netherlands (SPX) Jan 07, 2020
The North Atlantic Current transports warm water from the Gulf of Mexico towards Europe, providing much of north-western Europe with a relatively mild climate. However, scientists suspect that meltwater from Greenland and excessive rainfall could interfere with this ocean current. Simulations by scientists from the University of Groningen and Utrecht University showed that it is unlikely that the current will come to a complete stop, due to small and rapid changes in precipitation over the North Atlantic. However, there is a 15 percent likelihood that there will be a temporary change in the current in the next 100 years. The results were published on 30 December in the journal Scientific Reports. 'The oceans store an immense amount of energy and the ocean currents have a strong effect on the Earth's climate,' says University of Groningen Associate Professor in Numerical Mathematics, Fred Wubs. Together with his colleague Henk Dijkstra from Utrecht University, he has studied ocean currents for some 20 years.
Box model Simulations of the effects of freshwater on the currents have already been performed for some decades. 'Both high-resolution models, based on the equations describing fluid flows, and highly simplified box models have been used,' explains Wubs. 'Our colleagues in Utrecht created a box model that describes present-day large-scale processes in the ocean rather well.'
Total collapse 'As the transitions we were looking for are expected to be rare events, you need a huge number of simulations to estimate the chance of them happening,' says Wubs. However, the Dutch scientists found that a French scientist had devised a method to select the most promising simulations, reducing the number of full simulations required. Sven Baars, a PhD student of Wubs, implemented this method efficiently and linked it to the Utrecht box model. Daniele Castellana, a PhD student of Dijkstra, performed the simulations. 'These simulations showed that the chances of a total collapse of the North Atlantic Current within the next thousand years are negligible,' says Wubs.
Interruption Therefore, the current study is just a first step in determining the risk. The model does not take into account considerable changes in freshwater in the North Atlantic, which can be caused by the melting of the ice sheets. Wubs: 'Confirming our results through simulation with a high-resolution climate model will be the next challenge.'
Research Report: "Transition probabilities of noise-induced transitions of the Atlantic Ocean Circulation"
![]() ![]() Coral fossils show Southern Ocean current sensitive to wind conditions Washington (UPI) Dec 31, 2019 Scientists knew the Antarctic Circumpolar Current, a cold current circling through the Southern Ocean, is driven by winds, but until now scientists weren't sure of its stability. New analysis of fossil coral skeletons suggests the ocean current is especially sensitive to winds, and that changes in the current influence the exchange of CO2 between the Southern Ocean and the atmosphere. "The Southern Ocean connects all the world's oceans," lead researcher Torben Struve, a geochemist at the ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |