Subscribe free to our newsletters via your
. Earth Science News .




WATER WORLD
Recipe for saving coral reefs: Add more fish
by Staff Writers
Sydney, Australia (SPX) Apr 14, 2015


Redfin butterflyfish in their coral reef habitat. Fish are the key ingredients in a new recipe to diagnose and restore degraded coral reef ecosystems, according to scientists from the Australian Institute of Marine Science, the WCS, James Cook University, and other organizations in a new study in the journal Nature. Image courtesy Tim McClanahan/WCS. For a larger version of this image please go here.

Fish are the key ingredients in a new recipe to diagnose and restore degraded coral reef ecosystems, according to scientists from the Australian Institute of Marine Science, WCS, James Cook University, and other organizations in a new study in the journal Nature.

For overfished coral reef systems, restoring fish populations that perform key roles will in turn restore ecological functions critical to recovery. For moderately or lightly fished reefs, the recipe requires knowing which fish to catch, how many, and which to leave behind.

The authors assessed fish biomass and functional groups from more than 800 coral reefs worldwide and used them to estimate recovery periods for both lightly fished and overfished reefs. The scientists speculate that maintaining and restoring fish populations and the functions they provide can increase the resilience of reefs to large-scale threats such as climate change.

The coral reefs of the world are in crisis, endangered by a number of coastal threats such as overfishing, pollution, and coastal development as well as global threats such as climate change. According to the World Resources Institute, some 75 percent of the world's coral reefs are now threatened and more than 20 percent have disappeared since climate and fishing disturbances have accelerated in the past 30 years. At the same time, only 27 percent of the world's coral reefs are contained within marine protected areas.

"By studying remote and marine protected areas, we were able to estimate how much fish there would be on coral reefs without fishing, as well as how long it should take newly protected areas to recover," said M. Aaron MacNeil, Senior Research Scientist for the Australian Institute of Marine Science and lead author on the study.

"This is important because we can now gauge the impact reef fisheries have had historically and make informed management decisions that include time frames for recovery."

"The methods used to estimate reef health in this study are simple enough that most fishers and managers can take the weight and pulse of their reef and keep it in the healthy range," said Tim McClanahan, WCS Senior Conservationist and a co-author on the study. "Fishers and managers now have the ability to map out a plan for recovery of reef health that will give them the best chance to adapt to climate change."

Coral reef experts agree that fishing is a primary driver in the degradation of reef function, which in turn has generated growing interest in finding fisheries management solutions to support reef resilience.

Removing too many herbivorous and predatory fish species deprives coral reefs of critical ecosystem functions and the capacity to respond effectively to other disturbances. Knowing the right amount to leave behind can help local fisheries set clear limits to how many fish can be taken without threatening the ecosystem they rely on.

In response to this need, the study authors have created the first empirical estimate of coral reef fisheries recovery potential using data from 832 coral reefs in 64 locations around the world.

The analysis included marine reserves and fishing closures as a control for estimating healthy fish biomass along with numerous sites along a spectrum of fishing intensity, from heavily fished reefs in the Caribbean to locations with low fishing rates and high fish "biomass" such as the Easter Islands. Despite the breadth of the data, some simple and consistent numbers emerged from the study.

Some of the key metrics uncovered in the study:
+ According to the analysis, a coral reef with no fishing averages 1,000 kilograms per hectare of fish biomass.

+ The fish biomass threshold for a collapsed reef--overfished to the point of nearly total ecosystem failure--is 100 kilograms per hectare.

+ The most degraded reefs lack browsers (rudderfish, parrotfish, and surgeonfish), scraper/excavators (parrotfish), grazers (rabbitfish, damselfish), and planktivores (fusiliers), so the first steps in reef recovery depends on allowing these species and the services they provide to return.

+ Coral reefs that maintained 500 kilograms of fish biomass per hectare (about 50 percent of an average reef's carrying capacity) were found to maintain ecological functions while sustaining local fisheries, providing fishers and marine managers with a critical target.

+ The authors found that 83 percent of the 832 reefs surveyed contained less than the 500 kilogram fish biomass threshold needed to maintain ecological integrity and stave off decline.

+ The models generated time estimates needed for both unregulated and partially regulated coral reef fisheries to recovery; a moderately fished coral reef system can recover within approximately 35 years on average, while the most depleted ecosystems may take as long as 59 years with adequate protection.

The study also highlights the benefits of alternative fisheries restrictions, including bans on specific fishing gear such as small-mesh nets and restrictions on herbivorous species. Approximately 64 percent of coral reefs with fishing regulations (including bans on specific fishing gear such as small-mesh nets and restrictions on fishing of herbivorous species) were found to maintain more than 50 percent of their potential fish biomass.

"Reef fish play a range of important roles in the functioning of coral reef ecosystems, for example by grazing algae and controlling coral-eating invertebrates, that help to maintain the ecosystem as a whole," said coauthor Nick Graham of James Cook University. "By linking fisheries to ecology, we can now make informed statements about ecosystem function at a given level of fish biomass."

"The finding that gear restrictions, species selection or local customs can also contribute to fish population recovery is compelling. It demonstrates that managers can use a range of different management strategies in areas where it may not be culturally feasible to establish permanent marine reserves," said coauthor Stacy Jupiter, WCS Melanesia Program Director.

"Having a portfolio of management options provides flexibility to respond to local social and economic contexts. However, only completely closed no-take marine reserves successfully returned large predatory fish to the ecosystem."


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.
SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only


.


Related Links
Wildlife Conservation Society
Water News - Science, Technology and Politics






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





WATER WORLD
Unusual cancer spreads among clams off N. America
Miami (AFP) April 9, 2015
The discovery of a contagious cancer spreading among edible clams off the northeast US and Canadian coasts has stunned scientists and raised new questions about marine health, according to research published Thursday. The study in the journal Cell describes for the first time the unusual kind of leukemia that has been killing untold numbers of clams for years. "We were pretty amazed," sa ... read more


WATER WORLD
Aid agencies ready for Yemeni refugee influx in Horn of Africa

Red Cross, UN fly aid into Yemen as raids batter south

Chemical plant blast, anti-pollution protest in China

Radiation from Fukushima detected off Canada west coast

WATER WORLD
Physicists create new molecule with record-setting dipole moment

Largest database of elastic properties accelerates material science

Pick a color, any color

Vietnam hunts for missing box of radioactive material

WATER WORLD
We can fix the Great Barrier Reef

Sea sponge anchors are natural models of strength

Young sea turtles don't just drift, they swim

Thousands of goldfish taking over lake in Colorado

WATER WORLD
Gradual, prolonged permafrost greenhouse gas emissions forecast

Western Canada to lose 70 percent of glaciers by 2100

Alaska animals could experience habitat change from warming climate

Sea Shepherd in dramatic rescue of Antarctic 'poaching' ship crew

WATER WORLD
Fishing amplifies forage fish collapses

EU to simplify GMO import approval: sources

More food, low pollution effort gains traction

Living mulch, organic fertilizer tested on broccoli

WATER WORLD
US Marines plan force in Honduras for hurricane season

Costa Rica volcano throws up fiery rocks and ash: authorities

Typhoon Maysak melts away as it hits Philippines

Haiti floods kill six, damage thousands of homes

WATER WORLD
Holdout Mali rebels refuse to initial peace accord

Pygmies demand end to discrimination in DR Congo

Nigerian president quits voting station after tech glitch

Regional troops retake Nigerian town from Boko Haram

WATER WORLD
Ancient human fossils from Laos reveal early diversity

The rest of the brain gets in the way

If your kid hates school, it just may be their genes

'Little Foot' 3.67 million years old




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.