![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Washington DC (SPX) Oct 02, 2017
The human population carries around more deadly genetic diseases than would be expected based on a simple comparison of mutation rates and deaths of affected individuals. Carlos Eduardo Guerra Amorim of Stony Brook University and colleagues, explore potential explanations in a paper published September 28th, 2017 in PLOS Genetics. There are many lethal, recessive diseases that plague the human population, where inheriting a single copy of the defective gene has no effect, but inheriting a copy from each parent is fatal. Due to the lethality of these defective genes, geneticists have long wondered why natural selection has not purged these mutations from the population. In the current study, the researchers generated a handpicked set of 417 mutations in 32 genes that cause recessive lethal disorders, like cystic fibrosis or Tay-Sachs disease. Then they applied analytic models that balance how often these mutations crop up and how often they are eliminated through "purifying selection," when the affected individual dies or is unable to reproduce. When compared to the actual numbers of people carrying lethal recessive disorders, as estimated from 33,370 individuals of European ancestry, the researcher observed that several of the mutations were more common in the human population than the model had predicted. The researchers propose that lethal, recessive mutations are more common than might be expected due to several factors. These factors include balancing selection, i.e. the selective advantage of carrying a single copy of the defective gene, modulation of the disease severity, stakes in reporting the mutation that causes the disorder, errors in estimates of how often these mutations arise, and the fact that some parents have additional children after the loss of children born with the lethal mutations. Overall, the study highlights the factors that influence the frequencies of deadly, inherited defects. A better understanding of these factors may help researchers to identify overlooked mutations that cause these disorders. Carlos Eduardo Guerra Amorim adds: "The relevance of our work lies both in the finding that a long-standing theory in population genetics (i.e. mutation-selection-drift balance) seems to be a good model for explaining the frequencies of disease mutations in human populations, and the broad discussion of factors that are likely to influence disease alleles. This will hopefully help medical geneticists to identify and map harmful mutations in humans. Amorim CEG, Gao Z, Baker Z, Diesel JF, Simons YB, Haque IS, et al. (2017) The population genetics of human disease: The case of recessive, lethal mutations. PLoS Genet 13(9): e1006915.
![]() Boston MA (SPX) Sep 25, 2017 The first large-scale study of ancient human DNA from sub-Saharan Africa opens a long-awaited window into the identity of prehistoric populations in the region and how they moved around and replaced one another over the past 8,000 years. The findings, published Sept. 21 in Cell by an international research team led by Harvard Medical School, answer several longstanding mysteries and uncove ... read more Related Links PLOS All About Human Beings and How We Got To Be Here
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |