![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Barcelona, Spain (SPX) Sep 09, 2021
What determines the life expectancy of each species? This is a fundamental and highly complex question that has intrigued the field of research throughout history. From the evolutionary point of view, the major cause of these differences between species lies in their ecological adaptations. For example, life expectancy is longer in species adapted to living in trees, underground, or with large body mass, since all these adaptations reduce mortality by predation. In the case of mammals, their life expectancy varies hugely, ranging from short-lived species like shrews and mice - which, with luck, reach two years of age - to long-living species like whales - which can live for up to two hundred years. As for humans, we can potentially live for a hundred and twenty years, and on average we are all very long-lived. The keys to our long life expectancy, however, are still largely unknown. Until now, most studies have sought human longevity genes by comparing genomes within our species. However, the mutations observed can only explain the moderate variability - of tens of years - in the life expectancy of modern humans, far less than the variation observed between other mammals. Now, an international research team led by researchers at the Institute of Evolutionary Biology (IBE), a centre of the Spanish National Research Council (CSIC), and Pompeu Fabra University in Barcelona, Spain, has identified more than 2,000 new genes linked to longevity in humans from an evolutionary comparative genomic study that included 57 species of mammals. The genes identified are involved in biological mechanisms linked to the prolongation of life in mammals, such as DNA repair, coagulation and inflammatory response, and codify more stable proteins in longer-living species. Altogether, the mutations observed largely reflect the variance in longevity of today's human populations. "When you only compare human genomes, you see differences between the genes that codify small differences in longevity between people. But the genetic structure behind the character may be based on mutations that occurred millions of years ago in our lineage, and we all have incorporated now", explains Arcadi Navarro, principal investigator at the Evolutionary Genomics Laboratory at the IBE and co-director of the study. "Using the variation that exists between other species of mammals you can get much closer to identifying other changes that are in the nature of longevity that may not differentiate us significantly at the genetic level between humans", comments co-director of the study Gerard Muntane, a researcher with Arcadi Navarro's group and also a researcher at the Pere Virgili Institute for Health Research.
Protein stability, at the heart of longevity As a result of this study, the research team has discovered that the proteins that contain amino acid changes in longer-living organisms, are significantly more stable than the proteins of shorter-living organisms. "We believe that a protein is more stable when it continues to perform its function longer within the cell without degradation. With our approach, we have seen that this generic stabilization of the proteome is fundamentally found in genes we have identified as being related to age and longevity", says Muntane.
The application of evolutionary biology to medicine The methodology developed by the research team could be used to answer other questions related to human health in the future. "We could study any character of human health or disease, such as blood pressure, cholesterol or cancer, following the same approach", Muntane concludes. The study has received funding from the European Regional Development Fund, the State Research Agency and the Government of Catalonia, among others.
Research Report: "Comparative analysis of mammal genomes unveils key genomic variability for human lifespan"
![]() ![]() Study reveals link between microbiome, early brain development Washington DC (UPI) Sep 3, 2021 Scientists have identified new biomarkers for brain development by studying the microbiome of extreme preterm infants. The gut microbiome is composed of thousands of species of bacteria, fungi, viruses and other microbes. In healthy people, the community remains relatively stable. But a growing body of research suggests disruptions to the microbiome can influence human health, inhibiting the immune system, hormonal pathways, cognitive functions and more. Some scientists have even ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |