![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Knoxville TN (SPX) Nov 29, 2016
When an 8-magnitude earthquake struck Yingjie Hu's home province of Sichuan, China, in 2008, he was more than 1,000 miles away attending college in Shanghai. While Hu wanted to help, there wasn't much he could do due to the long distance. This situation has been changed in recent years. Thanks to humanitarian organizations, such as the Humanitarian OpenStreetMap Team, web-based mapping platforms have been developed that enable volunteers to participate in remote disaster response. Hu, now an assistant professor of geography at the University of Tennessee, Knoxville, and his colleagues have found a way to make the process more effective by developing an algorithm that indicates which areas need detailed mapping first. With better maps of the disaster zone, response teams can respond more efficiently to the most urgent needs. Their paper was recently published in the journal Geographical Analysis. In a typical web-based mapping project, volunteers review the most current remote sensing images, fill in the geographic data gaps and update the maps by, for example, indicating which roads are blocked after the disaster. Since there can be hundreds of volunteers working together, humanitarian organizations often divide the disaster-affected area into a number of grid cells. A volunteer can then choose one cell to start the mapping task. Without any guidance on the mapping priorities, volunteers may map the grid cells in a random order. Hu and his colleagues - Krzysztof Janowicz and Helen Couclelis, both of the University of California, Santa Barbara - developed an algorithm for prioritizing the mapping tasks. Their method takes into account the area's population, disaster severity and the road network and simulates potential rescue routes. The priorities of the grid cells are then ranked based on how the information within each cell can potentially assist the route-planning decisions of response teams. The result of the algorithm can help inform online volunteers about the priorities of the grid cells through color codes. "Different grid cells contain different geographic content," Hu said. "If online volunteers can first map the grid cells that are more urgent, response teams may be able to use the information at an earlier stage." He added that web mapping platforms are very valuable because they allow people to participate in disaster response even if they are far away from the disaster-affected area. "Online volunteers provide up-to-date geographic information that can help disaster response teams on the ground to make more informed decisions," he said. Right now, Hu's algorithm only focuses on road networks. "Within one grid, there can be other types of geographic information like hospital capacity or shelters," Hu said. "Eventually, we could also quantify the value of these other types of geographic information and aggregate them to provide a more comprehensive rank of the grids." As a next step, Hu hopes to partner with humanitarian organizations to further test the algorithm in a real disaster.
![]() ![]()
Related Links University of Tennessee at Knoxville Bringing Order To A World Of Disasters A world of storm and tempest When the Earth Quakes
|
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |