|
|
| . | ![]() |
. |
|
|
by Staff Writers Jerusalem (SPX) Apr 24, 2014
In parallel with modern man (Homo sapiens), there were other, extinct types of humans with whom we lived side by side, such as Neanderthals and the recently discovered Denisovans of Siberia. Yet only Homo sapiens survived. What was it in our genetic makeup that gave us the advantage? The truth is that little is known about our unique genetic makeup as distinguished from our archaic cousins, and how it contributed to the fact that we are the only species among them to survive. Even less is known about our unique epigenetic makeup, but it is exactly such epigenetic changes that may have shaped our own species. While genetics deals with the DNA sequence itself and the heritable changes in the DNA (mutations), epigenetics deals with heritable traits that are not caused by mutations. Rather, chemical modifications to the DNA can efficiently turn genes on and off without changing the sequence. This epigenetic regulatory layer controls where, when and how genes are activated, and is believed to be behind many of the differences between human groups. Indeed, many epigenetic changes distinguish us from the Neanderthal and the Denisovan, researchers at the Hebrew University of Jerusalem and Europe have now shown. In an article just published in Science, Dr. Liran Carmel, Prof. Eran Meshorer and David Gokhman of the Alexander Silberman Institute of Life sciences at the Hebrew University, along with scientists from Germany and Spain, have reconstructed, for the first time, the epigenome of the Neanderthal and the Denisovan. Then, by comparing this ancient epigenome with that of modern humans, they identified genes whose activity had changed only in our own species during our most recent evolution. Among those genetic pattern changes, many are expressed in brain development. Numerous changes were also observed in the immune and cardiovascular systems, whereas the digestive system remained relatively unchanged. On the negative side, the researchers found that many of the genes whose activity is unique to modern humans are linked to diseases like Alzheimer's disease, autism and schizophrenia, suggesting that these recent changes in our brain may underlie some of the psychiatric disorders that are so common in humans today. By reconstructing how genes were regulated in the Neanderthal and the Denisovan, the researchers provide the first insight into the evolution of gene regulation along the human lineage and open a window to a new field that allows the studying of gene regulation in species that went extinct hundreds of thousands of years ago.
Related Links The Hebrew University of Jerusalem All About Human Beings and How We Got To Be Here
|
|
| The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service. |