![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Oldenburg, Germany (SPX) Jan 07, 2020
The sea encircling Antarctica acts as a huge mixer for water from all the ocean basins - and this circulating pattern influences the exchange of carbon dioxide (CO2) between the ocean and the atmosphere. A study by an international team of researchers, led by Dr. Torben Struve from the University of Oldenburg's Institute for Chemistry and Biology of the Marine Environment (ICBM), has now established that this complex equilibrium of water masses reacts highly sensitively to wind conditions over the Southern Ocean. The study, which is published in the scientific journal Proceedings of the National Academy of Sciences, used measurements on fossil coral skeletons to reveal that significant changes in deep-water circulation occurred in the Drake Passage, a narrow strait between Antarctica and South America, around six to seven thousand years ago. The scientists see indications that these changes also influenced CO2 levels in the atmosphere - and suggest that future climate change could lead to increased release of CO2 from the deep waters of the Southern Ocean into the atmosphere. "The Southern Ocean connects all the world's oceans. It's one of the few places on Earth where water from great depths comes to the surface and at the same time surface water sinks to the depths," explained lead author Struve. The marine region around Antarctica is therefore critical for the global conveyor belt of ocean currents, which distributes heat, nutrients, salt and CO2 over great distances. However, until now, it had not been clear whether the current flowing in the Southern Ocean had changed significantly since the last ice age ended about 12,000 years ago. Previous studies by climate researchers had shown that there have been several shifts in the strong westerly winds blowing around Antarctica during the current interglacial period. These winds drive the Antarctic Circumpolar Current (ACC), a cold ocean current that extends from the surface to the ocean floor and which connects the Atlantic, Indian and Pacific Oceans. Importantly, the winds also stimulate the upwelling of deep ocean waters towards the ocean surface. The study set out to determine how the currents in the Southern Ocean reacted to these changes in the atmosphere. To answer this question, Struve and his colleagues from Imperial College London, University College London and the University of Edinburgh, analysed fossil cold-water corals from the Drake Passage, some of which were several thousand years old. The corals were collected from different water depths at three locations in the Drake Passage during two expeditions with the US research vessel Nathaniel B. Palmer. "This area is notorious for its poor weather conditions - simply collecting the samples was a challenge," Struve explained. The cold-water corals store certain trace elements, such as neodymium, in their calcareous skeletons, and therefore record a chemical fingerprint of the water they grew in. Analyses of the neodymium fingerprints in the coral samples showed that there was an abrupt change in the chemical composition of the water about 7,000 years ago, which lasted for about 1,000 years. On the basis of several findings, the team concluded that increased amounts of CO2-rich deep water from the Pacific Ocean penetrated the Drake Passage at that time, presumably driven by a northwards shift of the Southern Hemisphere westerly winds. "This was a surprising result for us. We hadn't expected the Southern Ocean to react so sensitively during an interglacial period," said Struve. "This study highlights the invaluable contribution of cold water coral fossils to understanding past climate change. They provide unique records of the chemical composition of seawater - often in regions of the ocean where other types of archives are scarce," co-author Dr. Kirsty Crocket of the University of Edinburgh underlined. The study also sheds light on a series of other climate changes that occurred around the same time. In particular, atmospheric CO2 levels, which had dropped slightly in the preceding 2,000 years, began to rise once more. Struve and his colleagues suspect that a key source for this phenomenon was an increase in the amount of CO2-rich Pacific deep water in the Southern Ocean. "This is important because when deep waters upwell to the surface of the Southern Ocean, some of the stored CO2 is able to escape to the atmosphere", explained co-author Dr. David Wilson. And then, as the winds shifted southwards once more, this upwelling increased and larger amounts of CO2 were released into the atmosphere. It is not yet clear how rising global temperatures will affect the ocean currents encircling Antarctica. However, current climate scenarios indicate that the Southern Hemisphere westerly winds will move further south towards Antarctica. This scenario could lead to stronger mixing of water masses in the Southern Ocean and more upwelling - which the team of researchers suspects could in turn result in larger amounts of CO2 being released from the deep ocean.
![]() ![]() Coral fossils show Southern Ocean current sensitive to wind conditions Washington (UPI) Dec 31, 2019 Scientists knew the Antarctic Circumpolar Current, a cold current circling through the Southern Ocean, is driven by winds, but until now scientists weren't sure of its stability. New analysis of fossil coral skeletons suggests the ocean current is especially sensitive to winds, and that changes in the current influence the exchange of CO2 between the Southern Ocean and the atmosphere. "The Southern Ocean connects all the world's oceans," lead researcher Torben Struve, a geochemist at the ... read more
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |