Subscribe free to our newsletters via your
. Earth Science News .

Subscribe free to our newsletters via your

A Deep Sea Hydrocarbon Factory

Graphic image of hydrothermal vent on the bottom of the Atlantic ocean, on the Mid-Atlantic Ridge. Graphic credit: University of Washington.

Minneapolis MN (SPX) Dec 13, 2004
A team of University of Minnesota scientists has discovered how iron- and chromium-rich rocks can generate natural gas (methane) and related hydrocarbons when reacted with superheated fluids circulating deep beneath the floor of the Atlantic Ocean.

Because the process is completely nonbiological, the hydrocarbons could have been a source of "food" for some of the first organisms to inhabit the Earth. Also, methane is a potent greenhouse gas, and this process may have contributed to global warming early in geologic time, the researchers said.

The researchers - Dionysios Foustoukos and Fu Qi and their graduate adviser, professor W.E. Seyfried, Jr.- presented a portion of this work on Monday, Dec. 13, at the American Geophysical Union meeting in the Moscone Convention Center, San Francisco.

The most familiar sources of methane are bacteria that live in bogs, lakes and the stomachs of ruminants like cows. But before any life existed, there must have been an energy source that could be tapped by primitive life forms.

The simplest sources are hydrogen-rich compounds like hydrogen gas, hydrogen sulfide gas and hydrocarbons.

In the laboratory, the researchers recreated the intense heat (more than 700 degrees F) and pressure (400 times air pressure at sea level) that exist on the ocean bottom in parts of the Mid-Atlantic Ridge (MAR).

The MAR, which runs in a jagged north-south line beneath the Atlantic Ocean, is a site where upwelling magma is slowly pushing huge slabs of crust apart, exposing portions of the Earth's upper mantle.

It contains structures called hydrothermal (hot water) vents, which spew superheated fluids into the seawater.

The team found that under such conditions, hydrocarbons - methane, ethane and propane - could be produced on the surface of minerals rich in iron and chromium.These hydrocarbons may help account for the diverse communities of life that typically thrive around hydrothermal vents.

The process of hydrocarbon production occurs in two steps. In the first, an iron compound in rock strips water of its oxygen, liberating hydrogen gas. In the second step, hydrogen gas and carbon dioxide (from the degassing of magma) combine to produce methane and water.

The Minnesota team discovered that rocks rich in chromium minerals accelerate the second step, while also producing more complex hydrocarbons - ethane and propane. Both likely serve as food for some bacteria.

"The second step is a reaction well known to chemists," said Seyfried, a professor of geology and geophysics.

"But in several papers published in the last few years, researchers have noted great difficulty in forming hydrocarbons more complex than methane. Dionysios [Foustoukas] showed that in the presence of chromium-bearing minerals, it could happen.

"Chemists might want to tweak this process and see if they can produce hydrocarbons more efficienty. But we want to get clues about what goes on in hydrothermal vents and to understand how hydrocarbon gases are generated in the continental and oceanic crust."

In related work, Seyfried and and his colleague Kang Ding have built chemical sensors that can be placed in hydrothermal vents to measure such items as acidity and the amounts of gases like hydrogen and hydrogen sulfide, which also serve as energy sources for microbial communities.

Acidity also seems to play a role in hydrocarbon synthesis in submarine hydrothermal systems. To access the vents as deep as two miles beneath the sea surface, the researchers use the submersible ALVIN; they have now dived to a number of vent sites.

Related Links
University of Minnesota
Search SpaceDaily
Subscribe To SpaceDaily Express

Putting Earth In Rehab
University Park PA (SPX) Dec 10, 2004
The length of time necessary to recover from a mass extinction may seem like a problem from the past, but a team of Penn State researchers is investigating recovery from the second largest extinction in Earth's history at the end of the Ordovician 443 million years ago and sees some parallels to today's Earth.

  • Blair Seeks To Secure Bush Backing For New Climate Treaty: Times
  • Gas-Guzzling SUVs Should Get Tobacco-Style Warnings: British Think Tank
  • Climate: Marshalling The Facts
  • Ground-Level Ozone Linked To Increased Mortality

  • Improved Predictions Of Cloud Formation For Better Climate Modeling
  • AstroVision Signs Marketing Agreement with Astro Research of Japan
  • Global Warming Good News For Coral Reefs: Research
  • Columbia Team Shows How Stratospheric Conditions Affect Weather

  • Electric Energy Security, Savings Goals Of Power Electronics Research
  • Green Mountain Introduces New Price Point For "Pollution Free" Power
  • PGE To Make Largest-Ever Wind Power Purchase
  • Wind Farming, Inc. To Build Two 100-Megawatt Wind/Hydrogen Sites in China

  • Insects Implicated In Evolution Of New Human Infectious Diseases
  • Customer Takes Control Of Thuraya
  • Boeing to Ship NASA's Tracking and Data Relay Satellite to Florida for March Launch
  • Eutelsat Boosts Hispasat Stake To 27 Percent

  • The content herein, unless otherwise known to be public domain, are Copyright 1995-2006 - SpaceDaily.AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA PortalReports are copyright European Space Agency. All NASA sourced material is public domain. Additionalcopyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement