Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Earth Science News .




CLIMATE SCIENCE
Chemistry trick kills climate controversy
by Staff Writers
Copenhagen, Denmark (SPX) Feb 14, 2013


Matthew Johnson, University of Copenhagen, is an associate professor at the Department of Chemistry where he studies chemical mechanisms in the atmosphere. Credit: Credit: Mikal Schlosser.

Volcanoes are well known for cooling the climate. But just how much and when has been a bone of contention among historians, glaciologists and archeologists. Now a team of atmosphere chemists, from the Tokyo Institute of Technology and the University of Copenhagen, has come up with a way to say for sure which historic episodes of global cooling were caused by volcanic eruptions.

The answer lies in patterns of isotopes found in ancient volcanic sulfur trapped in ice core, patterns due to stratospheric photochemistry. Their mechanism is published in the highly recognized journal PNAS.

Better history through atmospheric chemistry
Matthew Johnson is an associate professor at the Department of Chemistry, University of Copenhagen where he studies chemical mechanisms in the atmosphere. He is thrilled at the prospect of giving a more precise tool to historians studying cold spells.

"Historical records are not always so accurate. Some may have been written down long after the fact, or when a different calendar was in use by a different culture. But the chemistry does not lie", says Johnson.

Method reads height by analyzing effect of sunshine
Powerful volcanoes can shoot gases through the atmosphere and high into the stratosphere where it can affect climate globally for a year or more. Less powerful eruptions can also have powerful impacts, but only locally, and for shorter times. And here's the trick. High plumes spend longer in the harsh sunlight of the stratosphere, and that changes the chemical signature of the sulfur in the plume. The balance of various isotopes is changed according to very precise rules, explains Mathew Johnson.

"Using our method we can determine whether a given eruption was powerful enough for the plume to enter the stratosphere affecting global climate. If we can find material from ancient eruptions it can now be used to give an accurate record of global volcanic events extending many hundreds of thousands of years back in time.", says Johnson.

Clue to fires found in ice
Strangely, the best place to look for traces of the fiery events is in ice. Tracking climate history is performed on cores drilled from the ice shields of Greenland and Antarctica. Much like tree rings, the snows of each year is compacted into a layer representing that year. As you go further down in the borehole, you descend into deeper history.

If volcanic material shows up in a layer, you know there was an eruption in that year. Using the method developed by Johnson and his colleagues it is now possible to analyze exactly how powerful a given eruption was.

"With the sulfur isotope method, we now have a way to prove whether a given eruption was so explosive that it entered the stratosphere, affecting global climate and civilizations, or, whether a given eruption was confined to the troposphere and local in its effects" says Johnson and goes on: "There are many controversial eruptions.

"The Mediterranean island of Santorini blew apart and caused the end of the Minoan culture. But there is a huge debate about when exactly this occurred. 1601 was the 'year without a summer' - but nobody knows where the volcano was that erupted. There's debate over whether there was an eruption on Iceland in 527, or 535, or 541. The sulfur isotope trick is a definite method to solve debates like this and get the most information out of the ice core records" Says Matthew Johnson.

Global collaboration crucial to get results
Denmark has absolutely no volcanoes. So revealing the mechanism required the very different talents of two groups practically on opposite sides of the globe, explains Johnson.

"The Tokyo Institute of Technology specializes in analysis of the patterns of sulfur isotopes found in samples in nature, and was able to synthesize the isotopically labelled samples. The University of Copenhagen has a strong group in atmospheric chemistry and spectroscopy; the laboratory measurements were carried out in Copenhagen. Together we were able to do the experiments and build the atmospheric chemical model that demonstrated the stratospheric photoexcitation mechanism", concludes Johnson.

Article in PNAS

.


Related Links
University of Copenhagen
Climate Science News - Modeling, Mitigation Adaptation






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





CLIMATE SCIENCE
Security risks of extreme weather and climate change
Boston MA (SPX) Feb 14, 2013
Increasingly frequent extreme weather events such as droughts, floods, severe storms, and heat waves have focused the attention of climate scientists on the connections between greenhouse warming and extreme weather. Because of the potential threat to U.S. national security, a new study was conducted to explore the forces driving extreme weather events and their impacts over the next decad ... read more


CLIMATE SCIENCE
Aid trickles into tsunami-hit Solomons despite aftershocks

Smartphones, tablets help UW researchers improve storm forecasts

Rescuers struggle to aid Solomons quake victims

HDT Global Awarded Guardian Angel Air-Deployable Rescue Vehicle Contract

CLIMATE SCIENCE
Indra Develops The First High-Resolution Passive Radar System

ORNL scientists solve mercury mystery

3D Printing on the Micrometer Scale

Nextdoor renovates before taking on the world

CLIMATE SCIENCE
New Zealand dolphin faces extinction, group warns

Nothing fishy about swimming with same-sized mates

Large water loss detected in Mideast river basins: study

Balancing Biodiversity And Development In Small Fishing Communities

CLIMATE SCIENCE
Sunlight stimulates release of carbon dioxide from permafrost

Volcano location could be greenhouse-icehouse key

Features Of Southeast European Human Ancestors Influenced By Lack Of Episodic Glaciations

Polar bear researchers urge governments to act now and save the species

CLIMATE SCIENCE
X-rays reveal uptake of nanoparticles by soya bean crops

Widely used nanoparticles enter soybean plants from farm soil

Nitrogen from pollution, natural sources causes growth of toxic algae

Pioneering Finns share leftovers to cut waste

CLIMATE SCIENCE
Shimmering water reveals cold volcanic vent in Antarctic waters

Cargo container research to improve buildings' ability to withstand tsunamis

Powerful aftershocks rattle Solomon Islands

Hoodoos - key to earthquakes?

CLIMATE SCIENCE
Jane Goodall: chimp scientist turned activist

Plane carrying Guinea army delegation crashes in Liberia

Ghana extradites ex-military chief to I. Coast: security

Sudan president in Eritrea after Asmara mutiny: reports

CLIMATE SCIENCE
UF researchers include humans in most comprehensive tree of life to date

The last Neanderthals of southern Iberia did not coexist with modern humans

Computer helping save lost languages

Archaic Native Americans built massive Louisiana mound in less than 90 days




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement