Subscribe free to our newsletters via your
. Earth Science News .

DRI scientist co-authors study outlining vast differences in polar ocean microbial communities
by Staff Writers
Reno NV (SPX) Oct 10, 2012

illustration only

An international team of scientists, led by Dr. Alison Murray, an Associate Research Professor at the Desert Research Institute's Division of Earth and Ecosystem Sciences reported this week in the Proceedings of the National Academy of Science (PNAS) that a clear difference exists between the marine microbial communities in the Southern and Artic oceans, contributing to a better understanding of the biodiverisity of marine life at the poles and its biogeography.

This new understanding not only sheds light on newly recognized biodiversity patterns but reinforces the importance of study of Earth's polar regions in the face of a changing climate and identifies further need for research on the impacts of sea ice, seasonal shifts, and freshwater input in both regions.

Findings from the most comprehensive comparison of bacterioplankton diversity at both of the Earth's polar oceans showed that about 75 percent of the organisms at each pole are different.

"We believe that significant differences in the environmental conditions at each pole and unique selection mechanisms in the Artic and Southern oceans are at play in controlling surface and deep ocean community structure," said Murray, whose participation on this new report resulted from her role as a representative for the U.S. on the Scientific Committee for Antarctic Research (SCAR).

Murray, a polar researcher for the past 17 years, has participated in 14 expeditions to the Southern Ocean and Antarctic continent to conduct research and educational activities and worked on the Arctic tundra lake ecosystems in northern Alaska. She also recently authored a policy forum article on major conservation challenges facing the Antarctic region that was published by Science magazine in July, 2012.

Scientists found that the differences between the two poles were most pronounced in the microbial communities sampled from the coastal regions, which is - "likely a result of the significant differences in freshwater sourcing to the two polar oceans," said Dr. Jean-Francois Ghiglione, lead author of the report and research professor at the French Microbial Oceanography Laboratory (Observatoire Oceanologique) in Banyuls-Sur-Mer.

Dr. Ghiglione adds that in the Southern Ocean, glacial melt-water accounts for most of the freshwater that flows into the system. In contrast, the Arctic Ocean receives much bigger pulses of freshwater from several large river systems with huge continental drainage basins, in addition to glacial melt-water.

While the surface microbial communities appear to be dominated by environmental selection, noted the report's authors, the deep ocean communities are more constrained by historical events and connected through oceanic circulation, providing evidence for biogeographically defined communities in the global ocean.

This unique collaboration was the result of an international effort coordinated by Murray involving scientists from six countries - Canada, France, New Zealand, Spain, Sweden and the United States. .

The collaboration was made possible through the International Polar Year, a global research campaign, and the Sloan Foundation's Census of Marine Life Program, which stimulated field efforts at both poles as well as a separate program targeting marine microbes - International Census of Marine Microbes (ICoMM). Further, the National Polar Research programs from each of the six contributing nations, including the National Science Foundation, supported field expeditions.

"The collective energies required to bring this study to fruition was remarkable," Murray said. "By using similar strategies and technologies in sample collection through next-generation sequencing, we have a highly comparable, unprecedented dataset that for the first time has allowed us to take an in-depth look across a large number of samples into the similarities of the microbial communities between the two polar oceans."

Scientists compared 20 samples from the Southern Ocean against 24 similar samples from the Arctic Ocean taken from both surface and deep waters sites. They also included an additional 48 samples from Earth's lower latitudes to investigate the polar signal in global marine bacterial biogeography.

The researchers specifically compared samples from coastal and open oceans and between winter and summer seasons, to test whether or how environmental conditions and dispersal patterns shape microbial communities in the polar oceans. Samples were processed and analyzed by ICoMM, using an identical approach based on pyrosequencing and involving more than 800,000 sequences from each of the 92 samples.

"Our analyses identified a number of key organisms in both poles in the surface and deep ocean waters that are important in driving the differences between the communities," Murray said. "Still, further research is needed to address the ecological and evolutionary processes that underlie these unique patterns."


Related Links
Desert Research Institute
Beyond the Ice Age

Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks DiggDigg RedditReddit GoogleGoogle

Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News

ESA satellites looking deeper into sea ice
Paris (ESA) Oct 10, 2012
This year, satellites saw the extent of Arctic sea ice hit a record low since measurements began in the 1970s. ESA's SMOS and CryoSat satellites are now taking a deeper look by measuring the volume of the sea-ice cover. Measurements from ESA's Soil Moisture and Ocean Salinity (SMOS) mission show that ice has thinned significantly in the seasonal ice zones, with extensive areas less than ha ... read more

Planning can cut costs of disasters: World Bank

12 Chinese workers killed, 24 hurt in dormitory blaze

Far, far beyond wrist radios

World leaders meet on disaster management in Japan

Court delays Australian miner's Malaysia plant

Making computer data storage cheaper and easier

Architect shares simple green architecture improvements for homes and offices

An operating system in the cloud

Freezing water droplets form sharp ice peaks

EU lays out 'blue economy' agenda

River Thames invaded with foreign species

Southern Hemisphere becoming drier

DRI scientist co-authors study outlining vast differences in polar ocean microbial communities

ESA satellites looking deeper into sea ice

Russian boy discovers 'woolly mammoth of the century'

Life found in lake frozen for centuries

Contracts for Community Support Agriculture clarify expectations for producers and consumers

Delaying harvest of fodder maize results in a higher starch concentration and lower methane emission

Rearing Technique May Bolster Biocontrol Wasp's Commercial Prospects

Stanford researchers show oil palm plantations are clearing carbon-rich tropical forests in Borneo

Floods kill 7 in Russian Caucasus: official

NASA's HS3 Mission Thoroughly Investigates Long-Lived Hurricane Nadine

Japan tsunami gives lessons on disaster management

Nigerian president pledges $110 million to floods victims

Amnesty International calls on DRCongo to halt clashes in east

Nigerian army denies rampage, killing civilians after attack

Nigeria military shoots dead several people after blast: witnesses

Ivory Coast to reopen Ghana border on Monday: defence minister

New human neurons from adult cells right there in the brain

Dating encounters between modern humans and Neandertals

Last speaker of 'fisherfolk' dialect dies

Compelling evidence that brain parts evolve independently

The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement