Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



WOOD PILE
Emissions from the edge of the forest
by Staff Writers
Munich, Germany (SPX) Apr 02, 2017


Forest fragments of the Brazilian Mata Atlantica forest in Brazil are surrounded by sugar cane plantations. Image courtesy Usina Trapiche S/A.

When talk is of important ecosystems, tropical forests are top of the list. After all, half of the carbon stored in all of the Earth's vegetation is contained in these ecosystems. Deforestation has a correspondingly fatal effect. Scientists estimate that this releases 1000 million tonnes of carbon every year, which, in the form of greenhouse gasses, drives up global temperatures.

That is not all, however, reveals a new study by the Helmholtz Centre for Environmental Research (UFZ) and the University of Maryland. A team of scientists has discovered that fragmentation of formerly contiguous areas of forest leads to carbon emissions rising by another third. Researchers emphasise in the scientific journal Nature Communications that this previously neglected effect should be taken into account in future IPCC (Intergovernmental Panel on Climate Change) reports.

Mile upon mile of impenetrable green. When researchers travelled through the tropical rain forests of South America, Asia or Africa in centuries gone by, just making headway was a challenge in itself. Rivers were often the only transport links, roads were out of the question in many places. There were also huge areas where humans had not yet left their mark: no settlements or farmland, no deforestation or plantations for miles around.

The picture has changed since then, though. Human activity has cut clearings and trails through the once contiguous tropical forests. But just how far advanced is this fragmentation? And what are the implications for the carbon cycle and therefore for the global climate? These questions were explored by the team headed by UFZ researchers Prof. Andreas Huth and Dr. Rico Fischer in a new study arising from the Helmholtz Alliance "Remote Sensing and Earth System Dynamics".

"We have known for a long time that not only the complete loss of rain forests can exacerbate climate change," explains Andreas Huth. Fragmenting a larger forest area into several smaller ones also impacts the carbon balance. US researchers investigated this effect towards the end of the 1990s in a large-scale experiment on forest land in the vicinity of the Brazilian town of Manaus. They established that location is a decisive factor in the life expectancy of the trees in that area: while around two percent of all trees in the interior of an undisturbed tropical forest die each year, the figure is roughly double for those at the edge.

This is due to the fact that the vegetation at the edges is exposed to an unfavourable micro-climate: direct solar radiation, higher wind speeds and lower air humidities mean that these areas dry out more readily, even in the humid tropics. "Large trees suffer most from this development, because they are reliant on a good supply of water," explains Andreas Huth. Typically, this negative impact extends some hundred metres into the forest.

This means that larger amounts of carbon are released (in the form of the greenhouse gas carbon dioxide) from these areas than from the undisturbed interior of the forest. This is because firstly, the micro-organisms that break down dead trees produce copious amounts of CO2, and secondly, there is less vegetation remaining that can remove the greenhouse gas from the air by capturing the carbon in leaves, trunks and roots as part of its growth cycle.

But how much carbon is released at the edges of the tropical forests worldwide? Does it actually play a role in the carbon cycle and therefore in the development of the climate?

"In order to find that out, we combined the findings of the forest land experiments with information from remote sensing and forest modelling," says Rico Fischer. The decisive question in this respect was how many additional forest edges humans have created. The researchers had investigated this issue once before in an earlier study relating to South America, but this time the idea was to address the tropical forests the world over.

An overview of such huge areas can only be obtained with the help of satellite images. Scientists have already used these to prepare maps with a high resolution of 30 metres, sufficient to show the forest coverage of the entire tropics. It is possible to count exactly how many forest fragments there are in each region on these maps. And it is possible to measure what size they are and how long their edges are.

This would have been far too time-consuming by hand, however. "We were not able to deploy the customary computer programs designed to analyse landscapes, either," Andreas Huth reports. They were simply overwhelmed by the huge quantities of data. "We struggled with this issue for a long time," the researcher recalls. At the end of the day, he and his colleagues had no option but to develop their own software capable of exploring forest fragments in the tropics.

When the software finally became operational after 18 months of work, it supplied impressive results within a few hours. According to these findings, 19 percent of all the world's tropical forests are now no more than one hundred metres away from the edge of the forest. "This severe level of fragmentation is clearly due to human activity," says Rico Fischer.

This was revealed when the researchers merged their forest coverage maps with other maps depicting different types of vegetation. This made it possible to differentiate between natural transitions such as the ones between forest and savannah and man-made ones such as those between forest and agricultural fields.

Accordingly, humans are, from a global perspective, responsible for 84 percent of the total amount of tropical forest fragmentation, although the picture varies slightly from continent to continent. "This relates to historical usage", Andreas Huth explains. For example, especially large amounts of forest are being transformed into agricultural land in South America. In contrast, there are more tree species growing in the forests of South East Asia and Africa that are of economic interest themselves, which means that deforestation in these areas is especially harmful.

The varying types of usage, however, lead to different patterns of fragmentation. For example, South America not only has the largest area covered by tropical forests but, correspondingly, also the largest edge areas. The proportion of the edges to the overall forested area is particularly large in Africa, however.

The earth's tropical forests have so far been broken down into a total of some 50 million fragments. And every single one of them has been surveyed by the new special software. It was revealed that the total length of the edges of the tropical forests now amounts to almost 50 million kilometres - that is approximately a third of the distance between the earth and the sun.

Using field data and computer models, it was then possible to calculate the volume of carbon emissions along these forest borders. According to these calculations, fragmentation of the tropical forests leads to approximately 0.34 gigatonnes of additional carbon being released each year. In order to be able to accurately estimate this amount, one should be aware of the fact that the clearing of tropical forests gives rise to carbon emissions of around one gigatonne (1000 million tonnes) every year. Fragmentation of the remaining forests therefore increases this amount by approximately one third.

"Fragmentation therefore plays an important role in the global carbon cycle," says Andreas Huth to summarise. "Despite this fact, this effect has not been taken into consideration at all in the IPCC reports to date". The researchers hope that this will change in future. When dealing with tropical forests, it appears, even more sensitivity is required than previously assumed. To achieve effective climate protection, it will be necessary to stop chopping the forests into ever smaller fragments. Preventing deforestation alone is not enough.

Research paper

WOOD PILE
Forests fight global warming in many ways
Columbus OH (SPX) Mar 29, 2017
Forests play a complex role in keeping the planet cool, one that goes far beyond the absorption of carbon dioxide, new research has found. Trees also impact climate by regulating the exchange of water and energy between the Earth's surface and the atmosphere, an important influence that should be considered as policymakers contemplate efforts to conserve forested ... read more

Related Links
Helmholtz Centre for Environmental Research - UFZ
Forestry News - Global and Local News, Science and Application


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WOOD PILE
Mosul humanitarian crisis deepens as displacement peaks

Colombia opens probe into deadly landslide

Why is South America being hit by deadly landslides?

Colombia opens probe into deadly landslide

WOOD PILE
A step toward long-lasting sunscreen

Virtual reality to help seniors stave off cognitive decline

Technique makes more efficient, independent holograms

New research could help speed up the 3-D printing process

WOOD PILE
Where the Jordan stops flowing

L3 Technologies acquires autonomous underwater robot manufacturer

'Weather whiplash' triggered by changing climate will degrade Midwest's drinking water

Dead Sea to come alive with concert by electro pioneer

WOOD PILE
Microbial colonizers of Arctic soils are sensitive to future climate change

Some of Greenland's coastal ice will be permanently lost by 2100

Climate seesaw at the end of the last glacial phase

1997 was 'tipping point' for ice caps around Greenland's edges

WOOD PILE
EU approves Syngenta-ChemChina mega-deal

Newly characterized protein has potential to save US farmers millions annually

A slice of luxury: Hong Kong's high-end fruit fad

Making cows more environmentally friendly

WOOD PILE
Relief as flood peak passes in Australia town

NASA's CYGNSS Satellite Constellation Enters Science Operations Phase

Quake kills two near Iran Shiite holy city Mashhad

Australia floodwaters still rising, police search for missing

WOOD PILE
15 Burkina troops jailed over arms depot raid

European Union trains 'credible army' in C. Africa

Mali peace conference calls for talks with jihadists

'Executed' Gambian coup plotters exhumed

WOOD PILE
Married couples with shared ancestry tend to have similar genes

Researchers uncover prehistoric art and ornaments from Indonesian 'Ice Age'

Great apes know when people are wrong: study

Parallel computation provides deeper insight into brain function




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement