. Earth Science News .

Explosive evolution need not follow mass extinctions
by Staff Writers
Chicago IL (SPX) Feb 15, 2012

Graptoloids are an extinct zooplankton that lived in colonies. Because the animals evolved quickly and had a wide geographic range, their fossil record is rich - a trove of information on how species diversify.

Following one of Earth's five greatest mass extinctions, tiny marine organisms called graptoloids did not begin to rapidly develop new physical traits until about 2 million years after competing species became extinct.

This discovery, based on new research, challenges the widely held assumption that a period of explosive evolution quickly follows for survivors of mass extinctions.

In the absence of competition, the common theory goes, surviving species hurry to adapt, evolving new physical attributes to take advantage of newly opened niches in the ecosystem. But that's not what researchers found in graptoloid populations that survived a mass extinction about 445 million years ago.

"What we found is more consistent with a different theory, which says you might expect an evolutionary lag as the ecosystem reforms itself and new interspecies relationships form," said University at Buffalo geology professor Charles E. Mitchell, who led the research.

The research provides insight on how a new mass extinction, possibly one resulting from man-made problems such as deforestation and climate change, might affect life on Earth today.

"How would it affect today's plankton? How would it affect groups of organisms in general?" asked the paper's lead author, David W. Bapst, a PhD candidate at the University of Chicago, who studied with Mitchell as an undergraduate.

"The general motivation behind this work is understanding how extinction and evolution of form relate to each other, and the fossil record is the only place where we can do these sort of experiments across long spans of time," Bapst said.

The research on graptoloids is scheduled to appear in the online Early Edition of the Proceedings of the National Academy of Sciences.

Other team members included Peter C. Bullock and Michael J. Melchin of St. Francis Xavier University in Nova Scotia, and H. David Sheets of Canisius College in Buffalo, N.Y. The National Science Foundation and Natural Sciences and Engineering Research Council of Canada supported the study.

Graptoloids are an extinct zooplankton that lived in colonies. Because the animals evolved quickly and had a wide geographic range, their fossil record is rich - a trove of information on how species diversify.

Bapst, Mitchell and their colleagues examined two different groups of graptoloids in their study: neograptines and diplograptines. Each kind lived during the Ordovician mass extinction that began about 445 million years ago, but only neograptines survived.

Before the extinction event, diplograptine species were dominant, outnumbering neograptine species. Diplograptines also varied more in their morphology, building colonies of many different shapes.

With diplograptines gone after the Ordovician mass extinction, neograptines had a chance to recover in an environment free of competitors.

According to the popular ecological release hypothesis, a popular theory, these circumstances should have led to a burst of adaptive radiation. In other words, without competition, the neograptines should have diversified rapidly, developing new physical traits - new colonial architectures - to take advantage of ecological niches that the diplograptines once filled.

But that's not what the researchers found.

To test the adaptive radiation idea, they analyzed the colony forms of 183 neograptine and diplograptine species that lived before, during or after the Ordovician mass extinction - a total of 9 million years of graptoloid history.

This wealth of data enabled the team to track graptoloid evolution with more precision than past studies could. What the researchers discovered looked nothing like adaptive radiation.

Almost immediately following the Ordovician mass extinction, new neograptine species proliferated, as expected. But according to the study, these new species displayed only small changes in form or morphology, not the burst of innovation the release hypothesis predicts. In fact, graptoloids had been evolving new physical traits at a more intensive pace before the extinction event.

Limited morphological innovation among neograptines continued for approximately 2 million years after the extinction, Bapst said.

The lag supports a type of evolution that argues that interactions between co-evolving species help foster diversification. Because such relationships likely take time to develop in a recovering ecosystem, an evolutionary lag of the kind the graptoloid study detected should occur in the wake of a mass extinction.

Another possible explanation is that newly appeared graptoloid species may have differed in ways outside of physical traits, a phenomenon that biologists refer to as non-adaptive radiations. A third possibility is that graptoloids may have experienced evolutionary lag due to their complex mode of growth.

Besides investigating how neograptines fared after the extinction event, the team also analyzed whether colony form alone could explain why neograptines survived the mass extinction while diplograptines disappeared. The scientists concluded that this was unlikely, suggesting a role for other factors such as possible differences in the preferred habitat of the two groups.

Related Links
University of Chicago
Darwin Today At TerraDaily.com

Get Our Free Newsletters Via Email
Buy Advertising Editorial Enquiries


. Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

Ultraviolet protection molecule in plants yields its secrets
La Jolla CA (SPX) Feb 14, 2012
Lying around in the sun all day is hazardous not just for humans but also for plants, which have no means of escape. Ultraviolet (UV) radiation from the sun can damage proteins and DNA inside cells, leading to poor growth and even death (as well as carcinogenesis in humans). But plants have evolved some powerful adaptive defenses, including a complex array of protective responses orchestrated by ... read more

Fukushima faces increased quake risk - study

Japan's Fukushima reactor may be reheating: operator

Top US general meets Egypt's Tantawi amid NGOs row

Bird numbers drop around Fukushima

Lockheed Martin-Built Milstar Satellite Surpasses 10-Year On-Orbit Design Life

Space debris in the spotlight

A mineral way to catalysis?

Cisco appeals EU's Microsoft-Skype merger approval

Reform of EU fishing quotas urged

Engage China in water dialogue: Experts

Ocean microbe communities changing, but long-term environmental impact is unclear

Ocean warming causes elephant seals to dive deeper

Fish of Antarctica threatened by climate change

Despite Nobel tiff, Oslo backs China Arctic Council entry

NASA Mission Takes Stock of Earth's Melting Land Ice

CU-Boulder study shows global glaciers, ice caps, shedding billions of tons of mass annually

New Zealand court suspends farm sale to Chinese firm

Use space technology for food security: Former ISRO chief

Rainfed-dryland farming needs more investment

Hatchery fish mask the decline of wild salmon populations

Quake hits eastern Japan: nuclear plant stable

Buildings may be 'cloaked' from earthquake

Flood-weary suburb keen to vote for change in Senegal polls

Death toll from Madagascar cyclone rises to 16

Soldier killed in fresh clashes in southern Senegal

Sudanese air strike hits S Sudan, breaking pact: army

Nigeria army kills 12 suspected Islamists in flashpoint city

Inter-ethnic fighting displaces 40,000 in Kenya

Neanderthal demise due to many influences, including cultural changes

Why the brain is more reluctant to function as we age

Cutting-edge MRI techniques for studying communication within the brain

Entire genome of extinct human decoded from fossil

Memory Foam Mattress Review

Newsletters :: SpaceDaily Express :: SpaceWar Express :: TerraDaily Express :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


The content herein, unless otherwise known to be public domain, are Copyright 1995-2012 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement