Subscribe to our free daily newsletters
. Earth Science News .




Subscribe to our free daily newsletters



WATER WORLD
Graphene sieve turns seawater into drinking water
by Staff Writers
Manchester, UK (SPX) Apr 04, 2017


File image.

Graphene-oxide membranes have attracted considerable attention as promising candidates for new filtration technologies. Now the much sought-after development of making membranes capable of sieving common salts has been achieved. New research demonstrates the real-world potential of providing clean drinking water for millions of people who struggle to access adequate clean water sources.

The new findings from a group of scientists at The University of Manchester were published in the journal Nature Nanotechnology. Previously graphene-oxide membranes have shown exciting potential for gas separation and water filtration.

Graphene-oxide membranes developed at the National Graphene Institute have already demonstrated the potential of filtering out small nanoparticles, organic molecules, and even large salts. Until now, however, they couldn't be used for sieving common salts used in desalination technologies, which require even smaller sieves.

Previous research at The University of Manchester found that if immersed in water, graphene-oxide membranes become slightly swollen and smaller salts flow through the membrane along with water, but larger ions or molecules are blocked.

The Manchester-based group have now further developed these graphene membranes and found a strategy to avoid the swelling of the membrane when exposed to water. The pore size in the membrane can be precisely controlled which can sieve common salts out of salty water and make it safe to drink.

As the effects of climate change continue to reduce modern city's water supplies, wealthy modern countries are also investing in desalination technologies. Following the severe floods in California major wealthy cities are also looking increasingly to alternative water solutions.

When the common salts are dissolved in water, they always form a 'shell' of water molecules around the salts molecules. This allows the tiny capillaries of the graphene-oxide membranes to block the salt from flowing along with the water. Water molecules are able to pass through the membrane barrier and flow anomalously fast which is ideal for application of these membranes for desalination.

Professor Rahul Nair, at The University of Manchester said: "Realisation of scalable membranes with uniform pore size down to atomic scale is a significant step forward and will open new possibilities for improving the efficiency of desalination technology.

"This is the first clear-cut experiment in this regime. We also demonstrate that there are realistic possibilities to scale up the described approach and mass produce graphene-based membranes with required sieve sizes."

Mr. Jijo Abraham and Dr. Vasu Siddeswara Kalangi were the joint-lead authors on the research paper: "The developed membranes are not only useful for desalination, but the atomic scale tunability of the pore size also opens new opportunity to fabricate membranes with on-demand filtration capable of filtering out ions according to their sizes." said Mr. Abraham.

By 2025 the UN expects that 14% of the world's population will encounter water scarcity. This technology has the potential to revolutionise water filtration across the world, in particular in countries which cannot afford large scale desalination plants.

It is hoped that graphene-oxide membrane systems can be built on smaller scales making this technology accessible to countries which do not have the financial infrastructure to fund large plants without compromising the yield of fresh water produced.

Research paper

WATER WORLD
Internationally traded crops are shrinking globe's underground aquifers
Washington (UPI) Mar 28, 2017
Some of the most popular crops on the planet rely on agricultural irrigation, a practice shrinking water resources across the globe. According to new analysis by researchers at NASA, irrigation for a handful of internationally traded crops accounts for 11 percent of non-renewable groundwater withdrawals - that is the water drawn from underground aquifers and won't be replenished on hum ... read more

Related Links
University of Manchester
Water News - Science, Technology and Politics


Thanks for being here;
We need your help. The SpaceDaily news network continues to grow but revenues have never been harder to maintain.

With the rise of Ad Blockers, and Facebook - our traditional revenue sources via quality network advertising continues to decline. And unlike so many other news sites, we don't have a paywall - with those annoying usernames and passwords.

Our news coverage takes time and effort to publish 365 days a year.

If you find our news sites informative and useful then please consider becoming a regular supporter or for now make a one off contribution.

SpaceDaily Contributor
$5 Billed Once


credit card or paypal
SpaceDaily Monthly Supporter
$5 Billed Monthly


paypal only

Comment using your Disqus, Facebook, Google or Twitter login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle

WATER WORLD
Mosul humanitarian crisis deepens as displacement peaks

Colombia opens probe into deadly landslide

Trump's visceral response prompts Syria strikes

Over 6,000 flee 'terrifying' violence in S.Sudan town: UN

WATER WORLD
New research could help speed up the 3-D printing process

A self-healing, water-repellant coating that's ultra durable

Norway joins US Strategic Command space data sharing program

Citizen scientist photographs space station space debris from Earth

WATER WORLD
Graphene sieve turns seawater into drinking water

'Zero recovery' for corals in back-to-back Australia bleaching

UBC invention uses bacteria to purify water

Skeletons developed as chemistry of oceans changed

WATER WORLD
Climate seesaw at the end of the last glacial phase

Arctic Ocean becoming more like the Atlantic, scientists say

Microbial colonizers of Arctic soils are sensitive to future climate change

Some of Greenland's coastal ice will be permanently lost by 2100

WATER WORLD
New global report on food crisis

New rice fights off drought

Domesticated rice goes rogue

A 'bionic leaf' could help feed the world

WATER WORLD
Relief as flood peak passes in Australia town

Panic, damage as three strong quakes hit Philippines

Project Hotspot

Quake kills two near Iran Shiite holy city Mashhad

WATER WORLD
Boko Haram kills Nigerian troops after deadly raid on farmers

Five dead in jihadist attack in Mali

Boko Haram kills eight, abducts women in NE Nigeria: sources

New Somali army chief escapes deadly car bombing

WATER WORLD
Putting social science modeling through its paces

Study reveals 10,000 years of genetic continuity in northwest North America

Married couples with shared ancestry tend to have similar genes

Researchers uncover prehistoric art and ornaments from Indonesian 'Ice Age'




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News






The content herein, unless otherwise known to be public domain, are Copyright 1995-2017 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement