Free Newsletters - Space News - Defense Alert - Environment Report - Energy Monitor
. Earth Science News .




FLORA AND FAUNA
Homolog of mammalian neocortex found in bird brain
by Staff Writers
Chicago IL (SPX) Oct 05, 2012


File image.

A seemingly unique part of the human and mammalian brain is the neocortex, a layered structure on the outer surface of the organ where most higher-order processing is thought to occur. But new research at the University of Chicago has found the cells similar to those of the mammalian neocortex in the brains of birds, sitting in a vastly different anatomical structure.

The work, published in Proceedings of the National Academy of Sciences, confirms a 50-year-old hypothesis about the identity of a mysterious structure in the bird brain that has provoked decades of scientific debate. The research also sheds new light on the evolution of the brain and opens up new animal models for studying the neocortex.

"If you want to study motor neurons or dopamine cells, which are biomedically important, you can study them in mammals, in chick embryos, in zebrafish. But for these neurons of the cerebral cortex, we could only do that in mammals before," said Clifton Ragsdale, PhD, associate professor of neurobiology at University of Chicago Biological Sciences and senior author of the study. "Now, we can take advantage of these other experimental systems to ask how they are specified, can they regenerate, and other questions."

Both the mammalian neocortex and a structure in the bird brain called the dorsal ventricular ridge (DVR) originate from an embryonic region called the telencephalon. But the two regions mature into very different shapes, with the neocortex made up of six distinct cortical layers while the DVR contains large clusters of neurons called nuclei.

Because of this divergent anatomy, many scientists proposed that the bird DVR does not correspond to the mammalian cortex, but is analogous to another mammalian brain structure called the amygdala.

"All mammals have a neocortex, and it's virtually identical across all of them," said Jennifer Dugas-Ford, PhD, postdoctoral researcher at the University of Chicago and first author on the paper. "But when you go to the next closest group, the birds and reptiles, they don't have anything that looks remotely similar to neocortex."

But in the 1960s, neuroscientist Harvey Karten studied the neural inputs and outputs of the DVR, finding that they were remarkably similar to the pathways traveling to and from the neocortex in mammals. As a result, he proposed that the DVR performs a similar function to the neocortex despite its dramatically different anatomy.

Dugas-Ford, Ragsdale and co-author Joanna Rowell decided to test Karten's hypothesis by using recently discovered sets of molecular markers that can identify specific layers of mammalian cortex: the layer 4 "input" neurons or layer 5 "output" neurons. The researchers then looked for whether these marker genes were expressed in the DVR nuclei.

In two different bird species - chicken and zebra finch - the level 4 and 5 markers were expressed by distinct nuclei of the DVR, supporting Karten's hypothesis that the structure contains cells homologous to those of mammalian neocortex.

"Here was a completely different line of evidence," Ragsdale said. "There were molecular markers that picked out specific layers of cortex; whereas the original Karten theory was based just on connections, and some people dismissed that. But in two very distant birds, all of the gene expression fits together very nicely with the connections."

Dugas-Ford called the evidence "really incredible."

"All of our markers were exactly where they thought they would be in the DVR when you're comparing them to the neocortex," she said.

A similar experiment was conducted in a species of turtle, and revealed yet another anatomical possibility for these neocortex-like cells. Instead of a six-layer neocortex or a cluster of nuclei, the turtle brain had layer 4- and 5-like cells distributed along a single layer of the species' dorsal cortex.

"I think that's the interesting part, that you can have all these different morphologies built with the same cell types, just in different conformations," Rowell said. "It's a neocortex or a big clump of nuclei, and then in reptiles they have an unusual dorsal cortex unlike either of those."

Future experiments will test the developmental steps that shape these neurons into various structures, and the relative pros and cons of these anatomical differences. The complex language and tool-use of some bird species suggests that the nuclear organization of this pathway is also capable of supporting advanced functions - and even may offer advantages over the mammalian brain.

"If you wanted to have a special nuclear processing center in Broca's area to carry out language processing, you can't do that in a mammal," Ragsdale said. "But in a bird they have these special nuclei that are involved in vocalization. It's as if you have additional flexibility: You can have shorter circuits, longer circuits, you can have specialized processing centers."

Beyond the structural differences, the discovery of homologous neocortex cell types will allow scientists to study cortical neurons in bird species such as the chicken, a common model used for examining embryonic development. Such research could help scientists more easily study the neurons lost in paralysis, deafness, blindness, and other neurological conditions.

.


Related Links
University of Chicago Medical Center
Darwin Today At TerraDaily.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





FLORA AND FAUNA
Giant spiders to be released in Britain
London (UPI) Oct 4, 2012
British scientists say they've raised thousands of the country's largest spiders in preparation for reintroduction to their former stronghold in the southeast. With a leg span of more than 3 inches, the great raft spider Dolomedes plantarius is one of Britain's largest arachnids. Scientists said people should not be concerned about plans to release spiders into the wild, as they ... read more


FLORA AND FAUNA
All 18 children confirmed dead in China landslide

All 18 children confirmed dead in China landslide

Hong Kong mourns victims of boat tragedy

Argentine police protest after giant pay error

FLORA AND FAUNA
Google, publishers end long-running copyright case

Apple even stronger a year after Steve Jobs death

Prehistoric builders reveal trade secrets

Space debris delays Japan's satellite experiment

FLORA AND FAUNA
Sea-level study shows signs of things to come

Tree rings go with the flow of the Amazon

New Fish Species Offers Literal Take on 'Hooking Up'

The water flow of the Amazon River in a natural climate archive

FLORA AND FAUNA
Russian boy discovers 'woolly mammoth of the century'

Life found in lake frozen for centuries

Australian tycoon fined for Arctic party cruise

Study: Arctic warming faster than before

FLORA AND FAUNA
African land grabs are 'out of control'

New technologies advance livestock genomics for agricultural and biomedical uses

Superweeds linked to rising herbicide use in GM crops

Too Little Nitrogen May Restrain Carbon Storage Capability Of Plants

FLORA AND FAUNA
NASA Radar to Study Volcanoes in Alaska, Japan

Nadine ties Atlantic storm record

Typhoon Maliksi nearing Japan's northeast

Nigeria seasonal floods kill 148: Red Cross

FLORA AND FAUNA
Poor but at peace, Mozambique marks 20 years since civil war

Nigerian college says massacre not linked to campus vote

Nigeria seeks to end the curse of unfinished projects

Ivory Coast opens first major trial of soldiers in political crisis

FLORA AND FAUNA
Last speaker of 'fisherfolk' dialect dies

Compelling evidence that brain parts evolve independently

Anti-aging pill being developed

Human Brains Develop Wiring Slowly, Differing from Chimpanzees




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement