![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
. | ![]() |
. |
![]() by Staff Writers Wurzburg, Germany (SPX) Apr 24, 2017
Venus flytrap (Dionaea muscipula) is a carnivorous plant. Catching its prey, mainly insects, with a trapping structure formed by its leaves, the plants' glands secrete an enzyme to decompose the prey and take up the nutrients released. Although postulated since Darwin's pioneering studies, these secretory events have not been measured and analysed until now: An international team of researchers headed by Rainer Hedrich, a biophysicist from Julius-Maximilians-Universitat (JMU) Wurzburg in Bavaria, Germany, present the results in the journal PNAS. When a prey tries to escape the closed trap, it will inevitably touch the sensory hairs inside. Any mechanical contact with the hairs triggers an electrical signal that spreads across the trap in waves. From the third signal, the plant produces the hormone jasmonate; after the fifth signal, the digestive glands that line the inside of the traps like turf are activated.
Glands secrete acidic vesicles to decompose prey Moreover, genes are activated in the glands: "We assume that they provide for the vesicles being loaded with protons and chloride, that is hydrochloric acid," Hedrich explains and he adds: "We used ion-sensitive electrodes to measure that repeated touching of the sensory hairs triggers the influx of calcium ions into the gland. The rising calcium level in the cytoplasm causes the vesicles to fuse with the plasma membrane, similarly to the neurotransmitter secretion of neurons. The influx of calcium is followed by the efflux of protons and chloride after a time delay."
Conclusive analysis with carbon fibre electrodes The team positioned a carbon fibre electrode over the gland surface and waited with excitement what would happen. "At first, we were disappointed because we did not immediately detect signals as known from secretory cells in humans and animals," Scherzer recalls. Should the vesicles contain hydrochloric acid in the first hours after catching the prey but no digestive enzymes yet? And no molecules yet that assure the enzymes' functioning in the acidic environment? Does the plant have to produce all this first? That's exactly how it works: Molecular biologist Ines Fuchs found out that the plant only starts to produce the enzymes that decompose the prey after several hours. The first characteristic signals occurred after six hours and the process was in full swing 24 hours later. During this phase, the trap is completely acidic and rich in digestive enzymes.
Stabilising effect of glutathione keeps enzymes fit The same processes as described above take place in the same chronological order both when the sensory hairs are stimulated and when exposing the trap to the hormone jasmonate only. "A touch will very quickly trigger the jasmonate signalling pathway, but it takes time until the vesicles are produced and loaded with the proper freight which is facilitated by the hormone," Hedrich explains.
Calcium is a mandatory ingredient His experiments also showed that when the influx of calcium into the glands is blocked, the trap remains dry. "The calcium activation of the gland cells is therefore crucial," Hedrich says. "So we will now take a closer look at the biology of the calcium channels of Venus flytrap. We also want to investigate the mechanism which counts the signals transmitted by the sensory hairs in the gland and translates it into jasmonate-dependent biology."
![]() Tomsk, Russia (SPX) Apr 24, 2017 Sergey Leshchinskiy, paleontologist, head of TSU's Laboratory of Mesozoic and Cenozoic Continental Ecosystems, has studied the remains of Yakut mammoths collected on one of the largest locations in the world of mammoth fauna, Berelyokh. His study showed that almost half of the bones of these ancient mammals have signs of serious pathologies typical for the human skeletal system. According ... read more Related Links University of Wurzburg Darwin Today At TerraDaily.com
![]()
![]() |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2024 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. All articles labeled "by Staff Writers" include reports supplied to Space Media Network by industry news wires, PR agencies, corporate press officers and the like. Such articles are individually curated and edited by Space Media Network staff on the basis of the report's information value to our industry and professional readership. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. General Data Protection Regulation (GDPR) Statement Our advertisers use various cookies and the like to deliver the best ad banner available at one time. All network advertising suppliers have GDPR policies (Legitimate Interest) that conform with EU regulations for data collection. By using our websites you consent to cookie based advertising. If you do not agree with this then you must stop using the websites from May 25, 2018. Privacy Statement. Additional information can be found here at About Us. |